• Title/Summary/Keyword: Exposure estimation

Search Result 356, Processing Time 0.023 seconds

Development of a New Personal Magnetic Field Exposure Estimation Method for Use in Epidemiological EMF Surveys among Children under 17 Years of Age

  • Yang, Kwang-Ho;Ju, Mun-No;Myung, Sung-Ho;Shin, Koo-Yong;Hwang, Gi-Hyun;Park, June-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.376-383
    • /
    • 2012
  • A number of scientific researches are currently being conducted on the potential health hazards of power frequency electric and magnetic field (EMF). There exists a non-objective and psychological belief that they are harmful, although no scientific and objective proof of such exists. This possible health risk from ELF magnetic field (MF) exposure, especially for children under 17 years of age, is currently one of Korea's most highly contested social issues. Therefore, to assess the magnetic field exposure levels of those children in their general living environments, the personal MF exposure levels of 436 subjects were measured for about 6 years using government funding. Using the measured database, estimation formulas were developed to predict personal MF exposure levels. These formulas can serve as valuable tools in estimating 24-hour personal MF exposure levels without directly measuring the exposure. Three types of estimation formulas were developed by applying evolutionary computation methods such as genetic algorithm (GA) and genetic programming (GP). After tuning the database, the final three formulas with the smallest estimation error were selected, where the target estimation error was approximately 0.03 ${\mu}T$. The seven parameters of each of these three formulas are gender (G), age (A), house type (H), house size (HS), distance between the subject's residence and a power line (RD), power line voltage class (KV), and the usage conditions of electric appliances (RULE).

Comparison of Exposure Estimation Methods on Air Pollution of Residents of Industrial Complexes (광양만권 주변지역 주민들의 대기오염 노출추정을 위한 방법론 비교 연구)

  • Jung, Soon-Won;Cho, Yong-Sung;Yang, Won-Ho;Yu, Seung Do;Son, Bu-Soon
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.151-161
    • /
    • 2013
  • The assessment of personal exposure is a critical component in population-based epidemiologic studies of air pollution. This study was conducted to apply and compare the four exposure estimation methods of individual-level to air pollution concentration in a cohort including 2,283 subjects in Gwangyang, Korea. Individual-level exposure of air pollution were estimated using multiple approaches, including average across all monitors, nearest monitor, and spatial interpolation by inverse distance weighting and kriging. The mean concentrations of $PM_{10}$, $NO_2$, $SO_2$, CO, $O_3$ by four exposure estimation methods were slightly different but not significantly different from each other. Cross-validation showed that kriging was more accurate than other exposure estimation methods because kriging has probably predicted individual exposure levels equivalent to residential locations after estimating the parameters of a model according to the spatial surface of air pollution concentration. These data support that spatial interpolation methods may provide better estimates than selecting the value from the nearest monitor and averaging across values from all monitors by reflecting spatial attributes of air pollution on personal level.

A study on the development of long time exposure $SO_2$ sampler (장기 노출 $SO_2$ 간이 샘플러 개발에 관한 연구)

  • 이동인
    • Journal of Environmental Science International
    • /
    • v.2 no.3
    • /
    • pp.207-216
    • /
    • 1993
  • The concentrations of $SO_2$ and $SO_3$ were measured to estimate a new developed long time exposure $SO_2$ sampler at Onsan industrial area considering the meteorological factors from June to October, 1992. The mean concentration of $SO_3$ by $PbO_2$ method was 0.924 mg $SO_3 / 10cm^2$ $PbO_2$/day and their high values were shown in the center of the industrial area, which show potential pollution due to the increase of industrial activities and micrometeorological factors in and around the sites. As a result of statistical correlation between $SO_2$ concentration by new sampling method and $SO_3$ concentration by $PbO_2$ method in July and August, 1992, correlation coefficients were high (r=0.87, 0.91) and shown more than 0.83 value in the high concentration data set, which was arbitrarily divided into 7~10${\mu}l$$SO_2$ concentration in an attempt to further investigate these relationships. Therefore, use of new developed long time exposure TEX>$SO_2$ sampler is good for TEX>$SO_2$ measurement and valuable for estimation of air quality in the urban and industrial area. Key Words : a new developed long time exposure TEX>$SO_2$ sampler, correlation coefficients, high, $SO_2$ measurement, estimation of air Quality.

  • PDF

RADIATION DAMAGE IN THE HUMAN BODY ACUTE RADIATION SYNDROME AND MULTIPLE ORGAN FAILURE

  • AKASHI, MAKOTO;TAMURA, TAIJI;TOMINAGA, TAKAKO;ABE, KENICHI;HACHIYA, MISAO;NAKAYAMA, FUMIAKI
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.231-238
    • /
    • 2006
  • Whole-body exposure to high-dose radiation causes injury involving multiple organs that depends on their sensitivity to radiation. This acute radiation syndrome (ARS) is caused by a brief exposure of a major part of the body to radiation at a relatively high dose rate. ARS is characterized by an initial prodromal stage, a latent symptom-free period, a critical or manifestation phase that usually takes one of four forms (three forms): hematologic, gastrointestinal, or cardiovascular and neurological (neurovascular), depending upon the exposure dose, and a recovery phase or death. One of the most important factors in treating victims exposed to radiation is the estimation of the exposure dose. When high-dose exposure is considered, initial dose estimation must be performed in order to make strategy decisions for treatment as soon as possible. Dose estimation can be based on onset and severity of prodromal symptoms, decline in absolute lymphocyte count post exposure, and chromosomal analysis of peripheral blood lymphocytes. Moreover, dose assessment on the basis of calculation from reconstruction of the radiation event may be required. Experience of a criticality accident occurring in 1999 at Tokai-mura, Japan, showed that ARS led to multiple organ failure (MOF). This article will review ARS and discuss the possible mechanisms of MOF developing from ARS.

Estimation of Lead Exposure Intensity by Industry Using Nationwide Exposure Databases in Korea

  • Koh, Dong-Hee;Park, Ju-Hyun;Lee, Sang-Gil;Kim, Hwan-Cheol;Jung, Hyejung;Kim, Inah;Choi, Sangjun;Park, Donguk
    • Safety and Health at Work
    • /
    • v.12 no.4
    • /
    • pp.439-444
    • /
    • 2021
  • Background: In a previous study, we estimated exposure prevalence and the number of workers exposed to carcinogens by industry in Korea. The present study aimed to evaluate the optimal exposure intensity indicators of airborne lead exposure by comparing to blood lead measurements for the future development of the carcinogen exposure intensity database. Methods: Data concerning airborne lead measurements and blood lead levels were collected from nationwide occupational exposure databases, compiled between 2015 and 2016. Summary statistics, including the arithmetic mean (AM), geometric mean (GM), and 95th percentile level (X95) were calculated by industry both for airborne lead and blood lead measurements. Since many measurements were below the limits of detection (LODs), the simple replacement with half of the LOD and maximum likelihood estimation (MLE) methods were used for statistical analysis. For examining the optimal exposure indicator of airborne lead exposure, blood lead levels were used as reference data for subsequent rank correlation analyses. Results: A total of 19,637 airborne lead measurements and 32,848 blood lead measurements were used. In general, simple replacement showed a higher correlation than MLE. The results showed that AM and X95 using simple replacement could be used as optimal exposure intensity indicators, while X95 showed better correlations than AM in industries with 20 or more measurements. Conclusion: Our results showed that AM or X95 could be potential candidates for exposure intensity indicators in the Korean carcinogen exposure database. Especially, X95 is an optimal indicator where there are enough measurements to compute X95 values.

Estimation of Advertising Exposure Distribution by Zero-inflation Regression Models (영과잉 회귀모형을 이용한 광고노출분포 추정)

  • Lee, Dong-Hee
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2841-2852
    • /
    • 2018
  • This study examines regression modeling method using zero-inflated distribution in relation to estimation of exposure distribution required in advertisement media planning. Exposure distribution is the percentage of audiences that are exposed each time the ad is repeated. Such an exposure distribution plays a very important role in providing basic information necessary for calculating various indicators for quantitatively measuring the advertising effect. Especially, due to the decrease of advertising price and the spread of various media, the frequency of the advertisement or the broadcasting of specific advertisements has been greatly increased compared to the past. As a result, the frequency of exposure is relatively decreasing. In this situation, the number of individuals who are not exposed to the media, that is, are not exposed to advertising structurally is increasing. This research proposes advertising exposure distribution models using a zero-inflated regression model, and conducts a comparative study using actual cases.

Evaluation of the Application of a European Chemical Risk Assessment Tool in Korea (외국 노출량 산정 프로그램(ECETOC TRA)의 국내 적용을 위한 입력변수의 보정에 관한 연구)

  • Lee, Jong Han;Lee, Kown Seob;Hong, Mun Ki
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.191-199
    • /
    • 2012
  • Objectives: The study aim was to evaluate the application of a chemical exposure assessment tool for the Korean workplace. The Ministry of Employment and Labor in Korea (KMOEL) introduced the need for workplace risk assessments in 2011, requiring the Korean chemical industry to consider both domestic and international chemical regulation policies (e.g., estimations of exposure scenarios). Exposure scenarios are required in the European Union as part of material safety data sheets (MSDS) under the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) system. Methods: Although many programs for the estimation of exposure have been developed worldwide, to date there is no standard for the Korean workplace. To develop programs suitable for the Korean workplace, we examined the applicability of the European Center for Ecotoxicology and Toxicology of Chemicals target risk assessment (ECETOC TRA), which is recommended by the European Chemical Agency (ECHA). Results: To investigate the applicability of the ECETOC TRA to Korean industry, this study simulated 15 industrial processes. The predicted respiratory exposures for four processes using origin input parameters were underestimated compared to the measured respiratory exposure. Using calibrated input parameters, results for two processes were underestimated compared to the measured respiratory exposure. This result suggests that the use of calibrated input parameters reduces the differences between predicted and measured respiratory exposure. Conclusions: we developed applicable exposure estimating method by modifying the ECETOC TRA program; one suggested the development of exposure estimating program that explains Korea domestic workplace exposure scenario.This study will support the introduction of exposure scenario in MSDS system and protect health of worker from hazardous chemical.

A Study on Estimation of Radiation Exposure Dose During Dismantling of RCS Piping in Decommissioning Nuclear Power Plant

  • Lee, Taewoong;Jo, Seongmin;Park, Sunkyu;Kim, Nakjeom;Kim, Kichul;Park, Seongjun;Yoon, Changyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.243-253
    • /
    • 2021
  • In the dismantling process of a reactor coolant system (RCS) piping, a radiation protection plan should be established to minimize the radiation exposure doses of dismantling workers. Hence, it is necessary to estimate the individual effective dose in the RCS piping dismantling process when decommissioning a nuclear power plant. In this study, the radiation exposure doses of the dismantling workers at different positions was estimated using the MicroShield dose assessment program based on the NUREG/CR-1595 report. The individual effective dose, which is the sum of the effective dose to each tissue considering the working time, was used to estimate the radiation exposure dose. The estimations of the simulation results for all RCS piping dismantling tasks satisfied the dose limits prescribed by the ICRP-60 report. In dismantling the RCS piping of the Kori-1 or Wolsong-1 units in South Korea, the estimation and reduction method for the radiation exposure dose, and the simulated results of this study can be used to implement the radiation safety for optimal dismantling by providing information on the radiation exposure doses of the dismantling workers.

Radiological Safety Assessment for a Near-Surface Disposal Facility Using RESRAD-ONSITE Code

  • Jang, Jiseon;Kim, Tae-Man;Cho, Chun-Hyung;Lee, Dae Sung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.123-132
    • /
    • 2021
  • Radiological impact analyses were carried out for a near-surface radioactive waste repository at Gyeongju in South Korea. The RESRAD-ONSITE code was applied for the estimation of maximum exposure doses by considering various exposure pathways based on a land area of 2,500 ㎡ with a 0.15 m thick contamination zone. Typical influencing input parameters such as shield depth, shield materials' density, and shield erosion rate were examined for a sensitivity analysis. Then both residential farmer and industrial worker scenarios were used for the estimation of maximum exposure doses depending on exposure duration. The radiation dose evaluation results showed that 60Co, 137Cs, and 63Ni were major contributors to the total exposure dose compared with other radionuclides. Furthermore, the total exposure dose from ingestion (plant, meat, and milk) of the contaminated plants was more significant than those assessed for inhalation, with maximum values of 5.5×10-4 mSv·yr-1 for the plant ingestion. Thus the results of this study can be applied for determining near-surface radioactive waste repository conditions and providing quantitative analysis methods using RESRAD-ONSITE code for the safety assessment of disposing radioactive materials including decommissioning wastes to protect human health and the environment.

Individual Doses to the Public after the Fukushima Nuclear Accident

  • Ishikawa, Tetsuo
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.53-68
    • /
    • 2020
  • Background: International organizations such as the World Health Organization (WHO) and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) reported public exposure doses due to radionuclides released in the Fukushima nuclear accident a few years after the event. However, the reported doses were generally overestimated due to conservative assumptions such as a longer stay in deliberate areas designated for evacuation than the actual stay. After these reports had been published, more realistic dose values were reported by Japanese scientists. Materials and Methods: The present paper reviews those reports, including the most recently published articles; and summarizes estimated effective doses (external and internal) and issues related to their estimation. Results and Discussion: External dose estimation can be categorized as taking two approaches-estimation from ambient dose rate and peoples' behavior patterns-and measurements using personal dosimeters. The former approach was useful for estimating external doses in an early stage after the accident. The first 4-month doses were less than 2 mSv for most (94%) study subjects. Later on, individual doses came to be monitored by personal dosimeter measurements. On the basis of these measurements, the estimated median annual external dose was reported to be < 1 mSv in 2011 for 22 municipalities of Fukushima Prefecture. Internal dose estimation also can be categorized as taking two approaches: estimation from whole-body counting and estimation from monitoring of environmental samples such as radioactivity concentrations in food and drinking water. According to results by the former approach, committed effective dose due to 134Cs and 137Cs could be less than 0.1 mSv for most residents including those from evacuated areas. Conclusion: Realistic doses estimated by Japanese scientists indicated that the doses reported by WHO and UNSCEAR were generally overestimated. Average values for the first-year effective doses for residents in two affected areas (Namie Town and Iitate Village) were not likely to reach 10 mSv, the lower end of the doses estimated by WHO.