• Title/Summary/Keyword: Exposure chamber

Search Result 321, Processing Time 0.026 seconds

Alterations in hematological parameters in Republic of Korea Air Force pilots during altitude chamber flight (저압실 비행 훈련이 대한민국 공군 조종사의 혈액 성분에 미치는 영향)

  • Kim, Hyun-Soo;Jeon, Eun-Ryoung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.2
    • /
    • pp.58-63
    • /
    • 2012
  • An altitude chamber, also known as a hypobaric chamber, is a device used during aerospace or high terrestrial altitude research or training to simulate the effects of high altitude on the human body. Although data from altitude chamber researches using experimental animals have been accumulated, studies in the humans exposed to hypobaric conditions are seldomly reported. Despite the importance of altitude chamber flight training in the field of aviation physiology, the hematological analysis of post-flight physiological changes has rarely been performed. The aims of the present study were to investigate the alterations in blood components during altitude chamber flight and to determine whether the differences between pre- and post-flight values are significant. Sixty experienced pilots in the Republic of Korea Air Force were enrolled in the altitude chamber flight training. Venous blood samples were obtained before and immediately after the flight. Compared with the pre-flight values($6.32{\times}10^3/mm^3$, $5.02{\times}10^6/mm^3$, 15.61 g/dL, respectively), white blood cell count, red blood cell count and hemoglobin level were significantly increased after the flight($6.77{\times}10^3/mm^3$, $5.44{\times}10^6/mm^3$, 16.26 g/dL; p=0.006, p=0.012, p<0.001, respectively). These alterations may be attributable to the exposure to hypobaric hypoxia, 100% oxygen supply for denitrogenation, considerable rise and fall in altitude and psychophysical stress due to these factors. In further studies, experimental groups and methods should be individualized to ensure objectivity and diversification. In addition, multiple time-frame analyses regarding the changing pattern of each blood component are also required to elucidate the physiological process for adapting to the high terrestrial altitude exposure.

Performance Evaluation of Repair Methods for RC structures by Accelerating Test in Combined Deterioration Chamber and Long-Term Field Exposure Test (복합열화촉진실험 및 장기현장폭로실험에 의한 RC구조물 보수공법의 보수성능평가)

  • Kwon Young-Jin;Kim Jae-Hwan;Han Byung-Chan;Jang Seung-Yup
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.349-356
    • /
    • 2006
  • At present, the selecting system and analytic estimation criterion on repair materials and methods of the deteriorated RC structures have not yet been set up in domestic. Under these circumstances, deterioration such as shrinkage crack, corrosion of rebar has been often occurred after repair, and this finally results in too frequent repairs. In this study, three types of repair methods were experimentally investigated by the accelerating test in a combined deterioration chamber and long-term field exposure test. Three types of repair methods applied in this study belong to a group of polymer cement mortar, which is commonly used in repair works. According to the results of this study, durability of repair mortar layers and corrosion properties of recovered rebar could be investigated in short period by the accelerating test in a combined deterioration chamber, which can simulate the condition of repeated high-and-low temperature and repeated dry-and-wet environment, spraying chloride solution and emitting $CO_2$ gas. After 36 month long-term filed exposure test in the coastal area, harmful macro-cracks are observed in the polymer cement mortar layer of some repair methods. These crack are considered to result from drying shrinkage of polymer cement mortar. Also, after 36 month exposure, amount of corrosion area and weight loss of rebar are found to be different according to the types of repair methods.

Stem Effect Correction Factor of Ionization Chamber in Exposure Measurements of High Energy Photons (고 에너지 광자선의 조사선량 측정 시 전리함의 스템효과 보정계수)

  • Park, Cheol-Woo;Lee, Jae-Seung;Kweon, Dae-Chel;Cha, Dong-Soo;Kim, Jin-Soo;Kim, Kyoung-Keun
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2010
  • Ionization chambers often exhibit a stem effect, caused by interactions of radiation with air near the chamber end, or with dielectric in the chamber stem or cable. In this study measured stem effect correction factor for length of ionization chamber from medical linear accelerator recommend to with the use of stem correction method. For a model of the Farmer-type chamber, were used to calculate the beam quality correction factor. These interactions contribute to the apparent measured exposure. Additionally, it needs to consider ionization chamber use of small volume and stem effect of cable by a large field. Linear accelerator generated photons energy and increased dose repeatedly measured by using stem correction method. Stem effect was dependence of the energy and increases with photon energy conditions improved of beam quality. In conclusion, stem effect correction factor was measured within 0.4% calculated according to the exposures stem length and also supposed to determined below 1% of another stem correction method.

  • PDF

Characterization of Durability of PC panel by Accelerating Test in Deterioration Chamber and Long-Term Field Exposure Test (촉진열화 및 장기폭로시험에 의한 고성능 PC패널의 내구성능 및 열화특성)

  • Ma, Sang-Joon;Jang, Pil-Sung;Choi, Jae-Suk;Ju, Jung-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1549-1554
    • /
    • 2008
  • In this paper, The evaluation of durability of the PC Panel lining for tunnel structure was examined through the rapid test by carbonation and freezing and thawing. Also for the purpose of improvement of durability. Namely, the durable characteristics of PC Panel lining by carbonation and freezing and thawing, was evaluated by rapid test and long-term field exposure test and main influence factors were derived. As a result of test, Correlation of accelerating test in deterioration chamber and long-term field exposure test, it will be expected that the proposed correlation well to the prediction of life expectancy of structure and is contributed greatly in the future.

  • PDF

Monitoring Method for an Ambient Gamma Exposure Rate and Its Measurement Analysis

  • Lee, Mo-Sung;Woo, Jong-Kwan
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.4
    • /
    • pp.197-201
    • /
    • 2006
  • Daily and seasonal variations of the ambient gamma ray exposure rates were measured by using a pressurized ion chamber from January 2003 to December 2005 in the CheongJu Regional Radiation Monitoring Post and the patterns of the distributions were studied. The annual average of the daily variation of the exposure rate was $\sim0.17{\mu}R/h$. The exposure rate was found to be maximum during 8:00 am to 9:00 am and minimum during 8:00 pm to 10:00 pm. For the annual data, the exposure rate was the minimum during the month of February. The exposure rate increased from February to mid-October (except during the period from May to July with no change) and decreased from October to February. The seasonal variation was found to be about $1{\mu}R/h$. Most of the measured values (96%) of the exposure rates fell under the normal distribution with a deviation of less than 4.8% and the remaining 4% had large fluctuations caused mainly by the rainfalls.

Quantitative Evaluation of Image Quality using Automatic Exposure Control & Sensitivity in the Digital Chest Image (디지털 흉부영상에서 자동노출제어 및 감도변화를 이용한 영상품질의 정량적인 평가)

  • Lee, Jin-Soo;Ko, Seong-Jin;Kang, Se-Sik;Kim, Jung-Hoon;Kim, Dong-Hyun;Kim, Changsoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.275-283
    • /
    • 2013
  • The patient radiation dose is different depending on selection of Ion chamber when taking Chest PA which using AEC. In this paper, we studied acquiring the best diagnostic images according to selection of Ion chamber on AEC mode as well as minimizing patient radiation dose. Experimental methods were selection of Ion chamber and change of sensitivity under the same conditions as Chest PA projection. At AEC mode, two upper ion chambers sensors and one lower ion chamber sensor were divided into 7 cases according to selection of on/off. after measuring five times respectively, we obtained average value and calculated exposure dose. Image assessment was done with measured Modulation Transfer Function, Peak Signal to Noise Ratio, Root Mean Square, Signal to Noise Ratio, Contrast to Noise Ratio, Mean to Standard deviation Ratio respectively. In exposure assessment results, selection of two upper chambers was the lowest. In resolution assessment results, image of two upper chambers had the second high spatial frequency at sensitivity at 625(High) was 1.343 lp/mm. RMS value of image selecting two upper chambers was low secondly. SNR, CNR, MSR were the high value secondly. As the sensitivity was increased, radiation dose was decreased but better image could be obtained on image quality. In order to obtain the best medical images while minimizing the dose, usage of two upper ion chambers is considered to be clinically useful at sensitivity 625(High).

Assessment of the Particulate Matter Reduction Potential of Climbing Plants on Green Walls for Air Quality Management

  • Jeong, Na Ra;Kim, Jeong-Hee;Han, Seung Won;Kim, Jong-Cheol;Kim, Woo Young
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.4
    • /
    • pp.377-387
    • /
    • 2021
  • Background and objective: To improve air quality, particulate matter (PM) can be reduced using green infrastructure. Therefore, in this study, we aimed to determine the particulate matter reduction potential of climbing plants used for green walls, an element of vertical green infrastructure. Methods: A sealed chamber with controlled environmental variables was used to assess the PM reduction level caused by climbing plants. PM concentration in the plant chamber was measured after two and four hours of PM exposure, and the reduction potential was assessed based on the leaf area. Results: Compared to the empty chamber (Control), the PM reduction speed per hour was higher in the plant chamber, which confirmed that climbing plants contribute to the reduction of PM in the air. The PM reduction speed immediately after exposure in the plant chamber was high, but this slowed over time. Additionally, PM has been continuously reduced in plants with large leaves. As a result of calculating the particulate matter reduction level based on leaf area, it was found that there was a difference by particle size. Actinidia arguta, Parthenocissus tricuspidata, Trachelospermum asiaticum, and Euonymus fortunei var. radicans showed a high reduction effect. The trichomes on the leaf surface of Trachelospermum asiaticum were found to affect PM reduction. Conclusion: PM adsorption on the leaf surface is an important factor in reducing its concentration. It was possible to compare different plants by quantifying the amount of PM reduction during a fixed time period. These results can be used as the basic data to select the plant species suitable for urban green walls in terms of PM reduction.

Design Method for Flowing Water Purification with UV Lamp (UV램프를 이용한 유수처리형 살균장치의 설계방법)

  • Jung, Byung-Kyun;Lee, Jin-Jong;Jeong, Byeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.455-460
    • /
    • 2009
  • A number of factors combine to make ultraviolet radiation a superior means of water purification for ground water, rainwater harvesting systems and so on. Ultraviolet radiation is capable of destroying all types of bacteria. Additionally, ultraviolet radiation disinfects rapidly without the use of heat or chemical additives which may undesirably alter the composition of water. In a typical operation, water enters the inlet of a UV lamp and flows through the annular space between the quartz sleeve and the outside chamber wall. The irradiated water leaves through the outlet nozzle. Several design features are combined to determine the dosage delivered. The first is Wavelength output of the lamp, the Second is Length of the lamp - when the lamp is mounted parallel to the direction of water flow, the exposure time is proportional to the length of the lamp, the third is Design water flow rate - exposure time is inversely related to the linear flow rate, the forth is Diameter of the purification chamber - since the water itself absorbs UV energy, the delivered dosage diminishes logarithmically with the distance from the lamp. In this paper, It describe the how to design optimal UV disinfection device for ground water and rainwater. To search the optimal design method, it was performed computer simulation with 3D-CFD discrete ordinates model and manufactured prototype. Using proposed design method manufactured prototype applied to disinfection test and proved satisfied performance.

Evaluation of Image Quality for Diagnostic Digital Chest Image Using Ion Chamber in the Total Mastectomy (변형근치유방절제술 환자의 Ion chamber 변화에 따른 디지털 흉부 영상의 화질 평가)

  • Lee, Jin-Soo;Ko, Seong-Jin;Kang, Se-Sik;Kim, Jung-Hoon;Park, Hyong-Hu;Kim, Donghyun;Kim, Changsoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.3
    • /
    • pp.204-210
    • /
    • 2013
  • The patients who had been operated total mastectomy are different from general women in their breasts thickness due to breast surgery. As a result, digital chest image from total mastectomy patients will be different attenuation. The main objective for this study is to show that a proper Ion chamber standard combination measuring MTF which is objective basis for Digital image, when be x-ray for total mastectomy patient. We have designed the unique number that shown Left is 1, Right is 2, Center is 3 and have put the edge phantom on detector ion chamber. Lastly, we have obtained experiment images. The evaluations of all image quality have measured by 50% MTF of spatial resolution and absorption dose using Matlab(R2007a). The result showed that average exposure condition, MTF value, absorption dose for 1+3 and 2+3 combinations were 2.745 mAs, 1.925 lp/mm, 0.688 mGy. Consequently, that showed high MTF, DQE and low dose than other combinations. Therefore, a proper changes of ion chambers are able to improve image quality and to reduce radiation exposure when be X-ray for total mastectomy patients. Also, it will be possible to standard for application chamber combination and utilization on clinical detection.

Field Validation of alternative extraction method for the determination of airborne MWFs (대체용매를 이용한 금속가공유 측정방법 타당성에 대한 현장평가)

  • Jeong, Jee Yeon;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.2
    • /
    • pp.96-101
    • /
    • 2009
  • The purpose of this study was to conduct the field validation of alternative method(ETM method) by using non-carcinogenic, and less toxic solvents than NIOSH (National Institute for Occupational Safety and Health) analytical method 5524 for measuring the airborne metalworking fluids in workplaces. We carried out the field validation test by using the exposure chamber, guaranteeing the air sampling homogeneously in a machining environment. The ETM mixed solvent presented the complete solubility of MWFs used in test field. Based on the field test data, the bias of the ETM method from reference method, NIOSH analytical method 5524, was from -7.0% to 5.1%. The overall uncertainty of the ETM nethod was 21.6%, which satisfied the NIOSH criteria for the sampling and analytical criteria.