• Title/Summary/Keyword: Exposure Scenarios

Search Result 134, Processing Time 0.029 seconds

Systems Engineering Approach for the Reuse of Metallic Waste From NPP Decommissioning and Dose Evaluation (금속해체 폐기물의 재활용을 위한 시스템엔지니어링 방법론 적용 및 피폭선량 평가)

  • Seo, Hyung-Woo;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.45-63
    • /
    • 2017
  • The oldest commercial reactor in South Korea, Kori-1 Nuclear Power Plant (NPP), will be shut down in 2017. Proper treatment for decommissioning wastes is one of the key factors to decommission a plant successfully. Particularly important is the recycling of clearance level or very low level radioactively contaminated metallic wastes, which contributes to waste minimization and the reduction of disposal volume. The aim of this study is to introduce a conceptual design of a recycle system and to evaluate the doses incurred through defined work flows. The various architecture diagrams were organized to define operational procedures and tasks. Potential exposure scenarios were selected in accordance with the recycle system, and the doses were evaluated with the RESRAD-RECYCLE computer code. By using this tool, the important scenarios and radionuclides as well as impacts of radionuclide characteristics and partitioning factors are analyzed. Moreover, dose analysis can be used to provide information on the necessary decontamination, radiation protection process, and allowable concentration limits for exposure scenarios.

A Deterministic Safety Assessment of a Pyro-processed Waste Repository (A-KRS 처분 시스템 결정론적 안전성 평가)

  • Lee, Youn-Myoung;Jeong, Jongtae;Choi, Jongwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.171-188
    • /
    • 2012
  • A GoldSim template program for a safety assessment of a hybrid-typed repository system, called "A-KRS," in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been deterministically assessed with 5 various normal and abnormal scenarios associated with nuclide release and transport in and around the repository. Dose exposure rates to the farming exposure group have been evaluated in accordance with all the scenarios and then compared among other.

Radiological safety analysis of a newly designed spent resin mixture treatment facility during normal and abnormal operational scenarios for the safety of radiation workers

  • Jaehoon Byun;Seungbin Yoon;Hee Reyoung Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1935-1945
    • /
    • 2023
  • The radiological safety of workers in a newly developed microwave-based spent resin treatment facility was assessed based on work location and operational scenarios. The results show that the remote-operation room worker was exposed to maximum annual dose of 3.19E+00 mSv, which is 15.9% of the dose limit, thereby confirming radiological safety. Inside the pathway, annual doses in the range of 7.87E-02-2.07E-01 mSv were measured initially at the mock-up tank and later at the point between the spent resin separation and treatment parts. The dose of emergency maintenance workers was below the dose limit (4.08E-03-4.99E+00 mSv); however, before treatment (separation and microwave), the dose of maintenance and repair workers exceeded the dose limit. The doses of the effluent removal workers at the zeolite and activated carbon storage tank and spent resin storage tank were the lowest at 2.79E-01-2.87E-01 mSv and 9.27E-01 mSv in "1 h" and "4-5 h of operation", respectively. The immediately lower and upper layers of the facility room exhibited the highest annual doses of 1.84E+00 and 3.22E+00 mSv, respectively. Through this study, a scenario that can minimize the dose considering the movement of spent resin through the facility can be developed.

Effect of limestone calcined clay cement (LC3) on the fire safety of concrete structures

  • Gupta, Sanchit;Singh, Dheerendra;Gupta, Trilok;Chaudhary, Sandeep
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.263-278
    • /
    • 2022
  • Limestone calcined clay cement (LC3) is a low carbon alternative to conventional cement. Literature shows that using limestone and calcined clay in LC3 increases the thermal degradation of LC3 pastes and can increase the magnitude of fire risk in LC3 concrete structures. Higher thermal degradation of LC3 paste prompts this study toward understanding the fire performance of LC3 concrete and the associated magnitude of fire risk. For fire performance, concrete prepared using ordinary Portland cement (OPC), pozzolanic Portland cement (PPC) and LC3 were exposed to 16 scenarios of different elevated temperatures (400℃, 600℃, 800℃, and 1000℃) for different durations (0.5 h, 1 h, 2 h, and 4 h). After exposure to elevated temperatures, mass loss, residual ultrasonic pulse velocity (rUPV) and residual compressive strength (rCS) were measured as the residual properties of concrete. XRD (X-ray diffraction), TGA (thermogravimetric analysis) and three-factor ANOVA (analysis of variance) are also used to compare the fire performance of LC3 with OPC and PPC. Monte Carlo simulation has been used to assess the magnitude of fire risk in LC3 structures and devise recommendations for the robust application of LC3. Results show that LC3 concrete has weaker fire performance, with average rCS being 11.06% and 1.73% lower than OPC and PPC concrete. Analysis of 106 fire scenarios, in Indian context, shows lower rCS and higher failure probability for LC3 (95.05%, 2.22%) than OPC (98.16%, 0.22%) and PPC (96.48%, 1.14%). For robust application, either LC3 can be restricted to residential and educational structures (failure probability <0.5%), or LC3 can have reserve strength (factor of safety >1.08).

Health Risk Assessment for Artificial Turf Playgrounds in School Athletic Facilities: Multi-route Exposure Estimation for Use Patterns

  • Kim, Ho-Hyun;Lim, Young-Wook;Kim, Sun-Duk;Yeo, In-Young;Shin, Dong-Chun;Yang, Ji-Yeon
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.3
    • /
    • pp.206-221
    • /
    • 2012
  • Hazardous chemicals can be released from artificial turf used in some school playgrounds. To distinguish between Health risk assessment (HRA) exposure scenarios for this study, the ratio of elementary, middle and high schools was considered before final selection. Considering exposure pathways (inhalational, oral and dermal), media and materials were examined, targeting hazardous chemicals released from artificial turf playground-related products. Upon evaluation, the quantity of infill chips was shown to exceed the domestic product content standard (90 mg/kg) at eight (16%) out of 50 schools. PAHs were shown to exceed standards (10 mg/kg) at two (4%) out of the 50 schools. The excess cancer risk (ECR) of carcinogens was shown to be $1{\times}10^{-6}$ in most users for the worst exposure scenario. In children with pica, who represented the most extreme exposure group, the ECR was expected to be as high as $1{\times}10^{-4}$, showing the low risk level of carcinogens. The hazard index (HI) for individual chemicals was shown to be low, at around 0.1 or less, except for children with pica, according to the mean exposure scenario of artificial turf playground exposure. However, the HI was shown to exceed 1.0 in children with pica. Therefore, no direct health risk was found in using artificial turf playgrounds and urethane flooring tracks for the mean exposure scenario, except in children with pica.

Exposure and Health Risk Assessment of Lead Workers using Monte-Carlo Simulation (납 취급 근로자의 Monte-Carlo simulation을 이용한 노출 및 건강위해성평가)

  • Yeom, Jung Ho;Gwon, Keun Sang;Lee, Ju-Hyoung;Jeong, Joo-Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.2
    • /
    • pp.110-122
    • /
    • 2006
  • Objective : This study was conducted to quantify chronic lead exposure from various media(ie. working environment, food, ambient air), and to certify the usefulness of exposure assessment using Monte-Carlo simulation in the fields of occupational health. Methods : Data were obtained from Korean Industrial Health Association, Korea Food and Drug Administration, and the Ministry of Environment. Then lead worker's exposure was estimated indirectly from various media and parameters (ie. volume inhaled, body weight, dietary intake, etc.). Uncertainty was analyzed by Monte Carlo simulation with Crystal Ball software. Exposure doses and hazard indices were simulated with various hypothetical scenarios including weekly working hours and respiratory protective equipment. Results : Without respiratory protective equipment, the total exposure dose per kilogram of body weight of lead workers was estimated as $5.45{\times}10^{-3}mg/kg/day$, and hazard index was estimated as 2.26, and exposure contributions were calculated as follows : working environment(82.42 %); foods(17.57 %); and ambient air(0.01 %). But, if working condition has changed - reduction of working hours and using respiratory protective equipment, the total exposure dose per kilogram of body weight was estimated between $1.34{\times}10^{-3}-1.49{\times}10^{-3}mg/kg/day$, and hazard index was estimated between 0.56 - 0.62. Conclusions : This study suggested that occurrence of hazardous impact(ie. increased blood pressure) through lifetime lead exposure would be expected, and that the Monte-Carlo simulation was useful for the fields of occupational health.

Occupational Exposure Assessment for Benzene Using Exposure Models (ECETOC TRA and Stoffenmanager) and Applicability Evaluation of Exposure Models in K-REACH (노출 모델의 화평법 적용성: ECETOC TRA와 Stoffenmanager Tier 1 노출 모델을 활용한 벤젠의 작업자 노출 평가)

  • Moon, Joonsik;Ock, Jeongwon;Jung, Uk-Hyun;Ra, Jin-Sung;Kim, Ki-Tae
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.5
    • /
    • pp.460-467
    • /
    • 2018
  • Objectives: The objectives of this study are to estimate the inhalation exposure level of benzene for workers using Tier 1 exposure models ECETOC TRA (European Center for Ecotoxicology and Toxicology of Chemicals Target Risk Assessment) and Stoffenmanager, and to investigate their reliability for exposure assessment in K-REACH. Methods: Two exposure scenarios, 'manufacture of benzene' and 'use as solvents,' were developed for assessment of workers' exposure to benzene. The Process Category (PROC) for ECETOC TRA was collected from the European Chemical Agency (ECHA) registration dossier, and the Activity for Stoffenmanager was converted from PROC using translation of exposure models (TREXMO). The information related to exposure, such as working duration, Respiratory Protective Equipment (RPE), Local Exhaust Ventilation (LEV), and Risk Management Measure (RMM) were classified into high, medium, and low exposure conditions. The risk was determined by the ratio of the estimated exposure and occupational exposure limits of benzene. Results: Under high exposure conditions, the worker exposure level calculated from all PROCs and Activities exceeded the risk level, with the exception of PROC 1 and Activity 1. In the medium exposure condition, PROC 8a, 8b, and 9 and Activity 3, 7, and 8 all exceeded the risk, whereas in the low condition, all PROCs and Activities were determined to be safe. As a result, action corresponding with the low exposure condition is required to reduce the risk of exposure among workers in workplaces where benzene is manufactured or used as a solvent. In addition, the predicted exposure levels derived from the exposure models were lower than measured levels. The exposure levels estimated from Stoffenmanager were more conservative than those from ECETOC TRA. Conclusions: This study demonstrates the feasibility of exposure models for exposure assessment through the example of occupational inhalation exposure assessment for benzene. For more active utilization of exposure models in K-REACH, the exact application of collected information and accurate interpretation of obtained results are necessary.

Numerical Study of Contaminant Pathway based on Generic-scenarios and Contaminant-based Scenarios of Vadose Zone (범용 시나리오 및 오염물질 시나리오에 기반한 불포화대 오염물질 경로에 대한 수치모의 연구)

  • Chang, Sun Woo;Kim, Min-Gyu;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.751-758
    • /
    • 2019
  • This study tested various assumptions that simplified the configuration of the numerical model for unsaturated zone's contaminant transport to simulate the pathway to exposed point. This study investigated the contaminant migration through in the pollutant exposure pathway of vadoze zone for risk assessment of the contaminated site. For the purpose, generic scenarios as well as contaminant-based scenarios were simulated using the numerical code for transport of the contaminant in the pathway. The finite-difference one-dimensional transport with adsorption and biodegradation were considered, and it also assumed that the initial concentration was also depleted over time. The results of the generic-scenario show that as the groundwater infiltration rate decreases, the longer the path from the source to the groundwater level, the lower the concentration at the point of inflow into the groundwater level. In particular, in the case of high biodegradation rate and rapid depletion of pollutant sources, statistically outliers were found in the simulated results and generic scenarios was good at prediction.

Health Risks to Children and Adults Residing in Riverine Environments where Surficial Sediments Contain Metals Generated by Active Gold Mining in Ghana

  • Armah, Frederick Ato;Gyeabour, Elvis Kyere
    • Toxicological Research
    • /
    • v.29 no.1
    • /
    • pp.69-79
    • /
    • 2013
  • The purpose of this study was to investigate the current status of metal pollution in the sediment from rivers, lakes, and streams in active gold mining districts in Ghana. Two hundred and fifty surface sediment samples from 99 locations were collected and analyzed for concentrations of As, Hg, Cr, Co, Cu, Fe, Zn, Pb, Cd, Ni, and Mn using inductively coupled plasma-mass spectroscopy (ICP-MS). Metal concentrations were then used to assess the human health risks to resident children and adults in central tendency exposure (CTE) and reasonable maximum exposure (RME) scenarios. The concentrations of Pb, Cd, and As were almost twice the threshold values established by the Hong Kong Interim Sediment Quality Guidelines (ISQG). Hg, Cu, and Cr concentrations in sediment were 14, 20, and 26 times higher than the Canadian Freshwater Sediment Guidelines for these elements. Also, the concentrations of Pb, Cu, Cr, and Hg were 3, 11, 12, and 16 times more than the Australian and New Zealand Environment and Conservation Council (ANZECC) sediment guideline values. The results of the human health risk assessment indicate that for ingestion of sediment under the central tendency exposure (CTE) scenario, the cancer risks for child and adult residents from exposure to As were $4.18{\times}10^{-6}$ and $1.84{\times}10^{-7}$, respectively. This suggests that up to 4 children out of one million equally exposed children would contract cancer if exposed continuously to As over 70 years (the assumed lifetime). The hazard index for child residents following exposure to Cr(VI) in the RME scenario was 4.2. This is greater than the United States Environmental Protection Agency (USEPA) threshold of 1, indicating that adverse health effects to children from exposure to Cr(VI) are possible. This study demonstrates the urgent need to control industrial emissions and the severe heavy metal pollution in gold mining environments.

Assessment of Vulnerability to Climate Change in Coastal and Offshore Fisheries of Korea under the RCP Scenarios: for the South Coast Region (RCP 시나리오를 적용한 한국 연근해어업의 기후변화 취약성 평가: 남해안 지역을 대상으로)

  • Kim, Bong-Tae;Lee, Joon-Soo;Suh, Young-Sang
    • Ocean and Polar Research
    • /
    • v.40 no.1
    • /
    • pp.37-48
    • /
    • 2018
  • The purpose of this study is to assess the climate change vulnerability of coastal and offshore fisheries in the South Sea of Korea using the RCP scenarios. Based on the vulnerability defined by IPCC, the indicator-based method was applied. Exposure indicator was calculated through weighted sum of the sea temperature and salinity forecasted by National Institute of Fisheries Science, and the weights were obtained from the time-space distribution of each fisheries. Sensitivity indicator was determined by applying the catch proportion of fisheries to the sensitivity of fish species. The adaptive capacity was measured by survey of fisheries which represent the ability of the fishermen well. As a result of summarizing the above indicators, vulnerability of coastal fisheries is higher than offshore fisheries. This shows that measures against coastal fisheries are needed. In addition, the results of each scenario are somewhat different, so it is considered that accurate prediction of climate change is important for adaptation measures.