• Title/Summary/Keyword: Exposure Measure

Search Result 577, Processing Time 0.03 seconds

Comparison of the Measured Radiation Dose-rate by the Ionization Chamber and GM(Geiger-Müller) Counter After Radioactive Iodine Therapy in Differentiated Thyroid Cancer Patients (분화성 갑상선암환자의 방사성 요오드 치료시 전리함과 Geiger-Muller계수관에서 방사선량률 측정값 비교)

  • Park, Kwang-hun;Kim, Kgu-hwan
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.565-570
    • /
    • 2016
  • Radioactive iodine($^{131}I$) treatment reduces recurrence and increases survival in patients with differentiated thyroid cancer. However, it is important in terms of radiation safety management to measure the radiation dose rate generated from the patient because the radiation emitted from the patient may cause the exposure. Research methods, it measured radiation dose-rate according to the elapsed time from 1 m from the upper abdomen of the patient by intake of radioactive iodine. Directly comparing the changes over time, high dose rate sensitivity and efficiency is statistically significant, and higher chamber than GM counter(p<0.05). Low dose rate sensitivity and efficiency in the chamber had lower levels than gm counter, but not statistically significant(p>0.05). In this study confirmed the characteristics of calibrated ionization chamber and GM counter according to the radiation intensity during high-dose radioactive iodine therapy by measuring the accurate and rapid radiation dose rate to the patient explains, discharged patients will be reduced to worry about radiation hazard of family and others person.

Preparation of Styrene-Ethyl acylate Core-shell Structured Detection Materials for aMeasurement of the Wall Contamination by Emulsion Polymerization

  • Hwang, Ho-Sang;Seo, Bum-Kyoung;Lee, Dong-Gyu;Lee, Kune-Woo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.84-85
    • /
    • 2009
  • New approaches for detecting, preventing and remedying environmental damage are important for protection of the environment. Procedures must be developed and implemented to reduce the amount of waste produced in chemical processes, to detect the presence and/or concentration of contaminants and decontaminate fouled environments. Contamination can be classified into three general types: airborne, surface and structural. The most dangerous type is airborne contamination, because of the opportunity for inhalation and ingestion. The second most dangerous type is surface contamination. Surface contamination can be transferred to workers by casual contact and if disturbed can easily be made airborne. The decontamination of the surface in the nuclear facilities has been widely studied with particular emphasis on small and large surfaces. The amount of wastes being produced during decommissioning of nuclear facilities is much higher than the total wastes cumulated during operation. And, the process of decommissioning has a strong possibility of personal's exposure and emission to environment of the radioactive contaminants, requiring through monitoring and estimation of radiation and radioactivity. So, it is important to monitor the radioactive contamination level of the nuclear facilities for the determination of the decontamination method, the establishment of the decommissioning planning, and the worker's safety. But it is very difficult to measure the surface contamination of the floor and wall in the highly contaminated facilities. In this study, the poly(styrene-ethyl acrylate) [poly(St-EA)] core-shell composite polymer for measurement of the radioactive contamination was synthesized by the method of emulsion polymerization. The morphology of the poly(St-EA) composite emulsion particle was core-shell structure, with polystyrene (PS)as the core and poly(ethyl acrylate) (PEA) as the shell. Core-shell polymers of styrene (St)/ethyl acrylate (EA) pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl sulfate (SOS) as an emulsifier using ammonium persulfate (APS) as an initiator. The polymer was made by impregnating organic scintillators, 2,5-diphenyloxazole (PPO) and 1,4-bis[5-phenyl-2-oxazol]benzene (POPOP). Related tests and analysis confirmed the success in synthesis of composite polymer. The products are characterized by IT-IR spectroscopy, TGA that were used, respectively, to show the structure, the thermal stability of the prepared polymer. Two-phase particles with a core-shell structure were obtained in experiments where the estimated glass transition temperature and the morphologies of emulsion particles. Radiation pollution level the detection about under using examined the beta rays. The morphology of the poly(St-EA) composite polymer synthesized by the method of emulsion polymerization was a core-shell structure, as shown in Fig. 1. Core-shell materials consist of a core structural domain covered by a shell domain. Clearly, the entire surface of PS core was covered by PEA. The inner region was a PS core and the outer region was a PEA shell. The particle size distribution showed similar in the range 350-360 nm.

  • PDF

An Epidemiological Study on the Neurological Sequelae of Acute Carbon Monoxide Poisoning (급성일산화탄소중독(急性一酸化炭素中毒)의 신경학적(神經學的) 후유증(後遺症)에 관(關)한 역학적(疫學的) 연구(硏究))

  • Park, Byung-Joo;Cho, Soo-Hun;Ahn, Yoon-Ok;Shin, Young-Soo;Yun, Dork-Ro
    • Journal of Preventive Medicine and Public Health
    • /
    • v.17 no.1
    • /
    • pp.5-24
    • /
    • 1984
  • There has been an immense need for elaborate studies on the complications and the neuological sequelae generated by acute carbon monoxide (CO) poisoning which is highly prevalent in Korea due to widespread adoption of the anthracite coal briquette as domestic fuel for heating and for cooking. For this epidemiological study, a total of 444 subjects who received hospital emergency care for acute CO poisoning during the period of March 1982 to February 1983 were randomly selected from the emergency patients's lists of 13 general hospitals in Seoul area. Informations on the neurological sequelae were elucidated by means of home visiting with prearranged questionnaire consisting questions and concise neurological examination. The findings obtained were summarized as follows; 1. The complications were found in 18% of the surveyed and acute decubitus was comprised 67.5% of the complications. 2. The total cumulative incidence of the neurological sequelae was 41.2 per 100 patients and the absolute incidence rate regardless of the duration after poisoning was 40.8%. 3. The incidence of the neurological sequelae was higher in the older age than in the younger and also higher in female than in male. Twice higher incidence was observed in the admitted patients than in the non-admitted patients and the incidence became higher in proportion to the duration of CO exposure, coma and admission. The poorer the consciousness level of patients found, at emergency room and at discharge, the higher the incidence. The incidence of the neurological sequelae by emergency care was higher in hyperbaric oxygen therapy group(51.9%) than in 100% $O_2$ group(38.0%) 4. A total of five variables significantly associated with the occurrence of the neurological sequelae were selected by the stepwise discriminant analysis. The variables were following course of emergency care, age, consciousness level at discharge, admission duration, and consciousness level at emergency room in their sequence of discriminant power. Eight variables were selected as those associated with the degree of the neurological sequelae through the stepwise multiple regression analysis. Of these variables, the acute decubitus alone explained 21.1% of the total variation ana all the eight variables could explain 36.5% of the same. The remaining seven variables listed in the order of their relative importance were: age, consciousness level at discharge, admission duration, coma duration and consciousness level at emergency room. 5. It was postulated that unexpectedly high incidence of the neurological sequelae of the CO poisoning in this epidemiological study was mainly due to the inadequate emergency care and the lack of efficient and sophisticated treatment measure. In the effort to minimize the incidence of grave neurological sequelae of acute CO poisoning, new guidelines for the emergency care and treatment should be pursued with efficient ways.

  • PDF

Relationships between a Calculated Mass Concentration and a Measured Concentration of PM2.5 and Respirable Particle Matter Sampling Direct-Reading Instruments in Taconite Mines (타코나이트 광산 공정에서의 실시간 질량측정기기와 실시간 수농도의 환산에 의한 질량농도와의 연관성)

  • Chung, Eun-Kyo;Jang, Jae-Kil;Song, Se-Wook;Kim, Jeongho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.1
    • /
    • pp.65-73
    • /
    • 2014
  • Objectives: The purposes of this study are to investigate workers' exposures to respirable particles generated in taconite mines and to compare two metric methods for mass concentrations using direct-reading instruments. Methods: Air monitorings were conducted at six mines where subjects have been exposed primarily to particulate matters in crushing, concentrating, and pelletizing processes. Air samples were collected during 4 hours of the entire work shift for similarly exposure groups(SEGs) of nine jobs(N=37). Following instruments were employed to evaluate the workplace: a nanoparticle aerosol monitor(particle size range; 10-1000 nm, unit: ${\mu}m^2/cc$, Model 9000, TSI Inc.); DustTrak air monitors($PM_{10}$, $PM_{2.5}$, unit: $mg/m^3$, Model 8520, TSI Inc.); a condensation particle counter(size range; 20-1000 nm, unit: #/cc, P-Trak 8525, TSI Inc.); and an optical particle counter(particle number by size range $0.3-25{\mu}m$, unit: #/cc, Aerotrak 9306, TSI Inc.). Results: The highest airborne concentration among SEGs was for furnace operator followed by pelletizing maintenance workers in number of particle and surface area, but not in mass concentrations. The geometric means of $PM_{2.5}$ by the DustTrak and the Ptrak/Aerotrak were $0.04{\mu}m$(GSD 2.52) and $0.07{\mu}m$(GSD 2.60), respectively. Also, the geometric means of RPM by the DustTrak and the Ptrak/Aerotrak were $0.16{\mu}m$(GSD 2.24) and $0.32{\mu}m$(GSD 3.24), respectively. The Pearson correlation coefficient for DustTrak $PM_{2.5}$ and Ptrak/Aerotrak $PM_{2.5}$ was 0.56, and that of DustTrak RPM and Ptrak/Aerotrak RPM was 0.65, indicating a moderate positive association between the two sampling methods. Surface area and number concentration were highly correlated($R^2$ = 0.80), while $PM_{2.5}$ and RPM were also statistically correlated each other($R^2$ = 0.79). Conclusions: The results suggest that it is possible to measure airborne particulates by mass concentrations or particle number concentrations using real-time instruments instead of using the DustTrak Aerosol monitor that monitor mass concentrations only.

HOW TO DEFINE CLEAN VEHICLES\ulcorner ENVIRONMENTAL IMPACT RATING OF VEHICLES

  • Mierlo, J.-Van;Vereecken, L.;Maggetto, G.;Favrel, V.;Meyer, S.;Hecq, W.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.77-86
    • /
    • 2003
  • How to compare the environmental damage caused by vehicles with different foe]s and drive trains\ulcorner This paper describes a methodology to assess the environmental impact of vehicles, using different approaches, and evaluating their benefits and limitations. Rating systems are analysed as tools to compare the environmental impact of vehicles, allowing decision makers to dedicate their financial and non-financial policies and support measures in function of the ecological damage. The paper is based on the "Clean Vehicles" research project, commissioned by the Brussels Capital Region via the BIM-IBGE (Brussels Institute for the Conservation of the Environment) (Van Mierlo et at., 2001). The VriJe Universiteit Brussel (ETEC) and the universite Libre do Bruxelles (CEESE) have jointly carried out the workprogramme. The most important results of this project are illustrated in this paper. First an overview of environmental, economical and technical characteristics of the different alternative fuels and drive trains is given. Afterward the basic principles to identify the environmental impact of cars are described. An outline of the considered emissions and their environmental impact leads to the definition of the calculation method, named Ecoscore. A rather simple and pragmatic approach would be stating that all alternative fuelled vehicles (LPG, CNG, EV, HEV, etc.) can be considered as ′clean′. Another basic approach is considering as ′clean′ all vehicles satisfying a stringent omission regulation like EURO IV or EEV. Such approaches however don′t tell anything about the real environmental damage of the vehicles. In the paper we describe "how should the environmental impact of vehicles be defined\ulcorner", including parameters affecting the emissions of vehicles and their influence on human beings and on the environment and "how could it be defined \ulcorner", taking into account the availability of accurate and reliable data. We take into account different damages (acid rain, photochemical air pollution, global warming. noise, etc.) and their impacts on several receptors like human beings (e.g., cancer, respiratory diseases, etc), ecosystems, or buildings. The presented methodology is based on a kind of Life Cycle Assessment (LCA) in which the contribution of all emissions to a certain damage are considered (e.g. using Exposure-Response damage function). The emissions will include oil extraction, transportation refinery, electricity production, distribution, (Well-to-Wheel approach), as well as the emission due to the production, use and dismantling of the vehicle (Cradle-to-Grave approach). The different damages will be normalized to be able to make a comparison. Hence a reference value (determined by the reference vehicle chosen) will be defined as a target value (the normalized value will thus measure a kind of Distance to Target). The contribution of the different normalized damages to a single value "Ecoscore" will be based on a panel weighting method. Some examples of the calculation of the Ecoscore for different alternative fuels and drive trains will be calculated as an illustration of the methodology.

Study of Radon Management in the Environmental Impact Assessment Stage (환경영향평가 단계에서의 라돈 관리에 대한 연구)

  • Kim, Im-Soon;Oh, Hong-Sok;Lee, Kwan-Hyung;Kim, Choong-Gon
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.241-250
    • /
    • 2018
  • Recently, negative effects on human health such as disease caused by harmful environment have been dealt with seriously. In particular, studies on the effect of radon exposure, which is known as a primary carcinogen in lung cancer due to radioactive materials, have been actively studied. In Korea, since January 1, 2018, radon measurement is mandatory when building a new apartment, so it is necessary to measure the radon concentration and submit it to the local government and it should be posted where residents can see it. Radon has only recommended standards for multi-use facilities, but now it has decided to set recommendation standards for private homes. Therefore, it should now be possible to manage the radon in the environmental impact assessment phase as well as in the Post-environmental Impact Assessment. It should be possible to share health information such as the radon concentration and the risk of radon, and participation of health experts in the environmental impact assessment stage is required. Soil, air quality, hygiene and aerial items should be improved to take into account the effects of radon on human health during the environmental impact assessment process. If the level value of conncentration of radon shows above the recommended level, then alternative measures should be prepared and mitigation measures should be prepared as well.

Spatial Dose Distribution from Portable Hand-Held Dental X-Ray Equipment (이동형 치과 X선 발생장치의 공간선량 분포)

  • Han, Gyeong-Soon;Ahn, Sung-Min
    • Journal of dental hygiene science
    • /
    • v.15 no.3
    • /
    • pp.254-258
    • /
    • 2015
  • To compare the stationary dental X-ray generator and the portable dental X-ray generator and to understand spatial radiation dose depended on locations by measuring spatial radiation dose of the portable dental X-ray generator. The researchers used an Ionization chamber to measure spatial radiation dose which was generated while applying X-ray radiation to real bone skull phantom with both portable and stationary dental X-ray generator. There were 4 measurement locations which were immediate anterior, right, left and posterior. Distance of measurement was 50 cm in every location and the recorded result is an average of two applications of X-ray radiation to the maxillary molar area under the condition of 70 kVp, 3 mA, 0.1 sec. Average spatial radiation dose of portable X-ray generator was $37.51{\mu}Sv$, much higher than that of stationary X-ray generator which was $10.77{\mu}Sv$ (p<0.001). The result of the spatial radiation dose of the portable X-ray generator showed a huge difference depending on types of units which varied from $17.77{\mu}Sv$ to $68.90{\mu}Sv$ (p<0.05), also depending on the measurement location, immediate anterior resulted in the highest radiation dose of $54.14{\mu}Sv$ and immediate right was the lowest of $13.60{\mu}Sv$. Immediate left and posterior, however, resulted in similar radiation dose which were $42.12{\mu}Sv$, $40.18{\mu}Sv$ (p<0.01). With this result, we claim that usage of portable dental X-ray generator should be restricted to patients who can't move and exposure to radiation should be minimized by wearing lead-apron.

Measurement and Analysis of Pediatric Patient Exposure Dose Using Glass dosimeter and a PC-Based Monte Carlo Program (Glass dosimeter와 PCXMC Program을 이용한 소아피폭선량 측정 및 분석)

  • Kim, Young-Eun;Lee, Jeong-Hwa;Hong, Sun-Suk;Lee, Kwan-Seob
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.9-14
    • /
    • 2012
  • Exposed dose of young child should be managed necessarily. Young child is more sensitive than adult of a Radioactivity, especially, and lives longer than adult. Must reduce exposed dose which follows The ALARA(As Low As Reasonably Achievable)rule is recommended by ICRP(International Commission on Radiological Protection)within diagnostic useful range. Therefore, We have to prepare Pediatric DRL(Diagnostic Reference Level) in Korea as soon as possible. Consequently, in this study, wish to estimate organ dose and effective dose using PCXMC Program(a PC-Based Monte Carlo Program), and measure ESD(Entrance surface dose)and organ dose using Glass dosimeter, and then compare with DRL which follows EC(European Commission)and NRPB(National Radiological Protection Board). Using glass dosimeter and PCXMC programs conforming to the International Committee for Radioactivity Prevention(ICRP)-103 tissue weighting factor based on the item before the organs contained in the Chest, Skull, Pelvis, Abdomen in the organ doses and effective dose and dose measurements were evaluated convenience. In a straightforward way to RANDO phantom inserted glass dosimeter(GD352M)by using the hospital pediatric protocol, and in a indirect way was PCXMC the program through a virtual simulation of organ doses and effective dose were calculated. The ESD in Chest PA is 0.076mGy which is slightly higher than the DRL of NRPB(UK) is 0.07mGy, and is lower than the DRL of EC(Europe) which is 0.1mGy. The ESD in Chest Lateral is 0.130mGy which is lower than the DRL of EC(Europe) is 0.2mGy. The ESD in Skull PA is 0.423mGy which is 40 percent lower than the DRL of NRPB(UK) is 1.1mGy and is 28 percent lower than the DRL of EC(Europe) is 1.5mGy. The ESD in Skull Lateral is 0.478mGy which is half than the DRL of NRPB(UK) is 0.8mGy, is 40 percent lower than the DRL of EC(Europe) is 1mGy. The ESD in Pelvis AP is 0.293mGy which is half than the DRL of NRPB(UK) is 0.60mGy, is 30 percent lower than the DRL of EC(Europe)is 0.9mGy. Finally, the ESD in Abdomen AP is 0.223mGy which is half than the DRL of NRPB(UK) is 0.5mGy, and is 20 percent lower than the DRL of EC is 1.0mGy. The six kind of diagnostic radiological examination is generally lower than the DRL of NRPB(UK)and EC(Europe) except for Chest PA. Shouldn't overlook the age, body, other factors. Radiological technician must realize organ dose, effective dose, ESD when examining young child in hospital. That's why young child is more sensitive than adult of a Radioactivity.

  • PDF

Self-Organizing Middleware Platform Based on Overlay Network for Real-Time Transmission of Mobile Patients Vital Signal Stream (이동 환자 생체신호의 실시간 전달을 위한 오버레이 네트워크 기반 자율군집형 미들웨어 플랫폼)

  • Kang, Ho-Young;Jeong, Seol-Young;Ahn, Cheol-Soo;Park, Yu-Jin;Kang, Soon-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.7
    • /
    • pp.630-642
    • /
    • 2013
  • To transmit vital signal stream of mobile patients remotely, it requires mobility of patient and watcher, sensing function of patient's abnormal symptom and self-organizing service binding of related computing resources. In the existing relative researches, the vital signal stream is transmitted as a centralized approach which exposure the single point of failure itself and incur data traffic to central server although it is localized service. Self-organizing middleware platform based on heterogenous overlay network is a middleware platform which can transmit real-time data from sensor device(including vital signal measure devices) to Smartphone, TV, PC and external system through overlay network applied self-organizing mechanism. It can transmit and save vital signal stream from sensor device autonomically without arbitration of management server and several receiving devices can simultaneously receive and display through interaction of nodes in real-time.

Characteristics of Seasonal Distributions of Fine Particles ($PM_{2.5}$) and Particle-Associated Polycyclic Aromatic Hydrocarbons in Urban, Metropolitan and Industrial Complex Sites (중소도시, 대도시 및 산업지역에서 채취한 미세분진 ($PM_{2.5}$)과 입자상 다환방향족탄화수소의 계절적인 분포 특성)

  • Kim He-Kap;Jung Kyung-Mi;Kim Tae-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.1 s.52
    • /
    • pp.45-56
    • /
    • 2006
  • This study was conducted to investigate seasonal distributions of fine particles ($PM_{2.5}$) and associated polycyclic aromatic hydrocarbons (PAHs) at three cities. $PM_{2.5}$ samples were collected on glass fiber filters at urban (Chuncheon), metropolitan (Seoul), and industrial complex sites (Ulsan) from September, 2002 to February, 2004 using the Andersen FH 95 Particulate Sampler. About five 24-hour samples were collected from each site per season. The filters were analyzed for mass and six selected PAHs concentrations. $PM_{2.5}$ concentrations were the highest either in winter or spring, which could be attributed to the increase of fossil fuel combustion in winter or the transport of yellow sand to the Korean peninsula from China in spring, respectively. Regional $PM_{2.5}$ concentrations were higher in the order of Seoul>Chuncheon>Ulsan without statistical difference among cities. The filters were extracted using dichloromethane in an ultrasonicator and analyzed for six PAHs (anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, and benzo[a]pyrene) with HPLC. Total PAHs concentrations were statistically different among seasons in each site, and the highest concentrations were observed in winter at each sampling site. For total samples collected, the median total PAHs concentrations in Chuncheon ($4.6ng/m^3$) and Seoul ($4.4ng/m^3$) were approximately two times higher than that in Ulsan ($2.1ng/m^3$). Chrysene was a component found in the highest proportion among total PAHs at each site. Carcinogenic risks calculated based on the BaP toxic equivalency factors (TEFs) over the whole sampling period were higher in the order of Chuncheon>Seoul>Ulsan. This study suggests that the atmosphere of Chuncheon is contaminated with particulate matter and PAHs at the levels equivalent to those of Seoul and that an appropriate measure needs to be taken to mitigate human health risks from inhalation exposure to airborne fine particles.