• 제목/요약/키워드: Exposed concrete

검색결과 906건 처리시간 0.024초

Predicting residual moment capacity of thermally insulated RC beams exposed to fire using artificial neural networks

  • Erdem, Hakan
    • Computers and Concrete
    • /
    • 제19권6호
    • /
    • pp.711-716
    • /
    • 2017
  • This paper presents a method using artificial neural networks (ANNs) to predict the residual moment capacity of thermally insulated reinforced concrete (RC) beams exposed to fire. The use of heat resistant insulation material protects concrete beams against the harmful effects of fire. If it is desired to calculate the residual moment capacity of the beams in this state, the determination of the moment capacity of thermally insulated beams exposed to fire involves several consecutive calculations, which is significantly easier when ANNs are used. Beam width, beam effective depth, fire duration, concrete compressive and steel tensile strength, steel area, thermal conductivity of insulation material can influence behavior of RC beams exposed to high temperatures. In this study, a finite difference method was used to calculate the temperature distribution in a cross section of the beam, and temperature distribution, reduction mechanical properties of concrete and reinforcing steel and moment capacity were calculated using existing relations in literature. Data was generated for 336 beams with different beam width ($b_w$), beam account height (h), fire duration (t), mechanical properties of concrete ($f_{cd}$) and reinforcing steel ($f_{yd}$), steel area ($A_s$), insulation material thermal conductivity (kinsulation). Five input parameters ($b_w$, h, $f_{cd}$, $f_{yd}$, $A_s$ and $k_{insulation}$) were used in the ANN to estimate the moment capacity ($M_r$). The trained model allowed the investigation of the effects on the moment capacity of the insulation material and the results indicated that the use of insulation materials with the smallest value of the thermal conductivities used in calculations is effective in protecting the RC beam against fire.

Thermo-mechanical analysis of reinforced concrete slab using different fire models

  • Suljevic, Samir;Medic, Senad;Hrasnica, Mustafa
    • Coupled systems mechanics
    • /
    • 제9권2호
    • /
    • pp.163-182
    • /
    • 2020
  • Coupled thermo-mechanical analysis of reinforced concrete slab at elevated temperatures from a fire accounting for nonlinear thermal parameters is carried out. The main focus of the paper is put on a one-way continuous reinforced concrete slab exposed to fire from the single (bottom) side as the most typical working condition under fire loading. Although contemporary techniques alongside the fire protection measures are in constant development, in most cases it is not possible to avoid the material deterioration particularly nearby the exposed surface from a fire. Thereby the structural fire resistance of reinforced concrete slabs is mostly influenced by a relative distance between reinforcement and the exposed surface. A parametric study with variable concrete cover ranging from 15 mm to 35 mm is performed. As the first part of a one-way coupled thermo-mechanical analysis, transient nonlinear heat transfer analysis is performed by applying the net heat flux on the exposed surface. The solution of proposed heat analysis is obtained at certain time steps of interest by α-method using the explicit Euler time-integration scheme. Spatial discretization is done by the finite element method using a 1D 2-noded truss element with the temperature nodal values as unknowns. The obtained results in terms of temperature field inside the element are compared with available numerical and experimental results. A high level of agreement can be observed, implying the proposed model capable of describing the temperature field during a fire. Accompanying thermal analysis, mechanical analysis is performed in two ways. Firstly, using the guidelines given in Eurocode 2 - Part 1-2 resulting in the fire resistance rating for the aforementioned concrete cover values. The second way is a fully numerical coupled analysis carried out in general-purpose finite element software DIANA FEA. Both approaches indicate structural fire behavior similar to those observed in large-scale fire tests.

고로슬래그 미분말의 치환율 변화에 따른 노출 콘크리트의 물리 및 표면광택 특성 (Properties of Physical and Surface Glossing of Exposed Concrete with the Contents of Granulated Blast Furnace Slag)

  • 한천구;전충근
    • 콘크리트학회논문집
    • /
    • 제14권1호
    • /
    • pp.92-99
    • /
    • 2002
  • 본 연구는 고로슬래그 미분말의 치환율 변화에 따른 노출 콘크리트의 물리적 성질 및 표면 광택도 특성에 대하여 검토하였다. 실험결과, 고로슬래그 치환율 증가에 따른 공기량 및 유동성은 유사하게 나타났고, 단위용적중량은 저하하였다. 후기재령에서의 압축강도는 고로슬래그의 잠재수경성 반응에 기인하여 증가하였다. 건조수축은 커지는 것으로 나타났다. 노출 콘크리트의 표면 광택도는 W/B가 낮을수록 또한, 표면 도포인 경우 증가하였다. 고로슬래그 미분말의 치환율 증가에 따른 광택도는 고로 슬래그의 공극충전효과 및 백색도에 의하여 증가하였는데, 이때 고로슬래그 미분말의 치환율 10% 증가시 약 7% 정도 증가하였다. 거푸집 종류에 따라서는 아크릴, 치장합판, 철판, 일반합판 순으로 광택도가 우수한 것으로 나타났다.

Self-cleaning 침투성 함침제의 적용에 따른 타일 및 콘크리트 표층부의 개질특성 (Reforming Property of Tile and Concrete Surface layer Using Self-cleaning Concrete Impregnant)

  • 송훈;전찬수;김영호
    • 한국디지털건축인테리어학회논문집
    • /
    • 제13권4호
    • /
    • pp.61-68
    • /
    • 2013
  • Concrete structure is not the only material vulnerable to physical and chemical processes of deterioration associates with severe conditions. Deterioration of the concrete structure, however, occurs more progressively from the outside of the concrete exposed to severe conditions. Especially, Carbonation, chloride ion attack is more important factor of concrete durability. This study is interested in manufacturing the self-cleaning concrete surface impregnant including TEOS, lithium silicate for the repair of the exposed concrete surface and the color concrete requiring the advanced function in view of the concrete appearance. Form the results, TEOS and lithium silicate are very effective that increasing the concrete durability using self-cleaning concrete impregnant. Self-cleaning concrete impregnant specimens is satisfied with performance requirement of KS standard in adhesion test in tension but the reinforcement of concrete substrate is slight. So, the self-cleaning concrete impregnant of this study is more desirable for the improvement of durability rather than the reinforcement.

Moisture distribution in concrete subjected to rain induced wetting-drying

  • Sarkar, Kaustav;Bhattacharjee, Bishwajit
    • Computers and Concrete
    • /
    • 제14권6호
    • /
    • pp.635-656
    • /
    • 2014
  • A rational estimation of moisture distribution in structural concrete is vital for predicting the possible extent and rate of progression of impending degradation processes. The paper proposes a numerical scheme for analysing the evolution of moisture distribution in concrete subjected to wetting-drying exposure caused by intermittent periods of rainfall. The proposed paradigm is based on the stage wise implementation of non-linear finite element (FE) analysis, with each stage representing a distinct phase of a typical wet-dry cycle. The associated boundary conditions have been constituted to realize the influence of various meteorological elements such as rain, wind, relative humidity and temperature on the exposed concrete surface. The reliability of the developed scheme has been demonstrated through its application for the simulation of experimentally recorded moisture profiles reported in published literature. A sensitivity analysis has also been carried out to study the influence of critical material properties on simulated results. The proposed scheme is vital to the service life modelling of concrete structures in tropical climates which largely remain exposed to the action of alternating rains.

Effect of aggregate type on heated self-compacting concrete

  • Fathi, Hamoon;Lameie, Tina
    • Computers and Concrete
    • /
    • 제19권1호
    • /
    • pp.33-39
    • /
    • 2017
  • In this study, two types of aggregate were used for making self-compacting concrete. Standard cubic specimens were exposed to different temperatures. Seventy-two standard cylindrical specimens ($150{\times}300mm$) and Seventy-two cubic specimens (150 mm) were tested. Compressive strengths of the manufactured specimens at $23^{\circ}C$ were about 33 MPa to 40 MPa. The variable parameters among the self-compacting concrete specimens were of sand stone type. The specimens were exposed to 23, 100, 200, 400, 600, and $800^{\circ}C$ and their mechanical specifications were controlled. The heated specimens were subjected to the unconfined compression test with a quasi-static loading rate. The corresponding stress-strain curves and modulus of elasticity were compared. The results showed that, at higher temperatures, Scoria aggregate showed less sensitivity than ordinary aggregate. The concrete made with Scoria aggregate exhibited less strain. The heated self-compacting concrete had similar slopes before and after the peak. In fact, increasing heat produced gradual symmetrical stress-strain diagram span.

철근부식도 측정 및 방식기법 제시 (Corrosion Protection System and Measurement for Reinforcing Steels in Concrete)

  • 문홍식;이상국;류금성;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.827-832
    • /
    • 2000
  • Bridge structure is known as one of important infrafacilities for comfortable human life. Recent long-span bridges, such as Kwang-Ahn Grand bridge, Seo-hae Grand Bridge, Young-Jong Grand Bridge, etc, have been designed and constructed near the seaside without in-depth consideration of concrete durability problem. It is in particular noted tat corrosion of reinforcement steel in concrete is very important for the durability enhancement of concrete structures. The objective of this experimental study is to investigate the corrosion behavior of reinforcing steels in concrete specimens which are exposed to cyclic wet and dry saltwaters, and then to develop pertinent corrosion protection system such as rational cover depth, corrosion inhibitors, cathodic system for reinforced bridges exposed to marine environment.

  • PDF

초음파법을 이용한 고온가열 콘크리트의 비파괴 평가 (NDT of Concrete Exposed High Temperature Using Ultrasonic Method)

  • 황의철;김규용;최경철;윤민호;김홍섭;이보경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.24-25
    • /
    • 2016
  • Concrete has been recognized as a material which is resistant to high temperatures, but chemicophysical property of concrete is changed by the high temperature. So, mechanical properties of concrete may be reduced. So, concrete at high temperature is evaluated mechanical properties for safety inspection. However, research of ultrasonic method is not much. Therefore, the purpose of this study is to NDT(non-destructive test) of 30, 70, 110MPa concrete exposed high temperature using ultrasonic pulse velocity and amplitude.

  • PDF

알칼리 활성화 알루미노실리케이트계 경화체의 고온 열화 특성 (Degradation Propeties of Alkali-Activated Alumino-Silicate Composite Body Exposed to High Temperature)

  • 김원기;김홍주;이승헌
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.627-630
    • /
    • 2005
  • This paper examines degradation properties of alkali-activated alumino-silicate composite body by NAS solution exposed to high temperature. Activators include sodium hydroxides and sodium silicate solution. In the result of experiment, flexural and compressive strength of AAS base mortar exposed to high temperature ($400\~600^{\circ}C$) was higher than alumina cement base mortar. Particularly, In case of compressive strength, alumina cement base mortar was decreased by about $60\~70\%$. While, AAS base mortar exposed to high temperature ($400\~600^{\circ}C$) was higher than that curing by room temperature. The above results showed that AAS base inorganic binder has a good mechanical properties exposed to high temperature($400\~600$).

  • PDF

150MPa급 초고강도 노출콘크리트의 현장적용에 관한 연구 (A Study on Field Application of 150MPa Ultra Strength Surface-Exposed Concrete)

  • 공태웅;이수형;장재환;이한백
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.989-992
    • /
    • 2008
  • 본 연구에서는 선일공업(주)의 축적된 기술력을 바탕으로 초고강도(150MPa급) 콘크리트를 당사 기술 연구소 신축시 노출콘크리트에 적용함으로써, 이에 대한 사례를 소개하고자 한다. 현장적용에 앞서 실내실험 및 레미콘 배치플랜트 실험(이하 B/P Test)을 통해 콘크리트의 기초물성(슬럼프플로우, 공기량, 50cm도달시간, 경시변화, 압축강도) 및 생산성을 평가하였으며, 다음으로 실구조물과 동일한 벽체두께 거푸집종류 노출콘크리트용 콘 등을 고려하여 제작한 모의부재를 대상으로 Mock-up Test를 실시하여 충진성, 표면마감성(육안관찰) 및 수화열을 평가하였다. 그 결과 슬럼프플로우, 공기량, 50cm도달시간, 경시변화 및 압축강도는 요구조건에 만족한 결과를 보였으며, 수화열 계측결과는 온도균열지수 0.78로 유해한 균열발생을 제한할 지수를 나타냈다. 현장타설시 초고강도 콘크리트의 높은 단위용적중량으로 인해 거푸집 터짐현상이 발생하였기 때문에, 재타설시에는 재발방지를 위해 거푸집을 보강하고 타설시간을 조정하였다. 또한 노출표면의 극대화를 위해 저주파(1차) 및 고주파(2차)로 2회에 걸쳐 진동다짐을 실시하였지만 표면곰보가 발생하였다. 따라서 향후 초고강도 콘크리트를 노출콘크리트에 적용할 경우, 다양한 변수조건에 대한 체계적인 시공관리계획 및 시공방법개선이 중요할 것으로 판단된다.

  • PDF