• Title/Summary/Keyword: Exposed Whole-body Vibration

Search Result 34, Processing Time 0.022 seconds

Measurements of Whole-body Vibration Exposed from and Their UH60-helicopter Analysis Results (UH60 헬기 조종사의 피폭진동 측정 및 평가 결과)

  • Cheung, Wan-Sup;Byeon, Joo-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1327-1331
    • /
    • 2005
  • This Paper addresses what amount of whole-body vibration is exposed to Korean pilots of UH60 helicopters during their mission flight. To measure the expose4 whole-body vibration, the 12-axis whole-body vibration measurement system was used. It enables the direct measurement of whole-body vibration exposed from the body contact area consisting of the feet, hip and back. The measured 12-axis vibration signals were used to evaluate the vibration comfort level experienced by the pilots of UH60 helicopters. The evaluated vibration comfort level is found to be closeto 0.74-0.79m/s, which is equivalent to the semantic scale of 'fairly uncomfortable'. To assess the health effects of whole-body vibration exposed to Korean pilots of UH60 helicopters during their mission flight, the rms-based and VDV(vibration dose value)-based evaluation schemes, recommended by ISO 2631-1:1977, were exploited in this work. The evaluated results indicate that Korean pilots cannot avoid the fatigue-decreased proficiency limit after two-hour continuous flight. The whole-body vibration level exposed from the UH60 helicopters during continuous 10-hours mission flight is found to reach to the vibration exposure limit.

Measurements of Whole-body Vibration Exposed from UH60-Helicopter and Their Analysis Results (UH60 헬기 조종사의 피폭진동 측정 및 평가 결과)

  • Cheung, Wan-Sup;Byeon, Joo-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.132-137
    • /
    • 2005
  • This paper addresses what amount of whole-body vibration is exposed to pilots of UH60 helicopters during flight. To measure the whole-body exposed from the feet and seat, the 12-axis vibration measurement system was used. It enables simultaneous measurement of vibration exposure from the body contact area of the feet, hip and back. The measured 12-axis vibration signals are exploited to the comfort level of UH60 helicopters during flight. It is shown that the evaluated ride value is close to $0.74{\sim}0.79m/s^2$ and that it is equivalent to the semantic scale of 'fairly uncomfortable'. To assess the health effects of whole-body vibration exposed to pilots of UH60 helicopters during their flight, the rms-based and VDV(vibration dose value)-based evaluation results of measured four-axis vibration signals are shown in this work. The fatigue-decreased proficiency limit, whose level is half of the exposure limit, is expected to come after the two-hour flight. The exposure limit is shown to reach after the 10-hour flight.

  • PDF

The Health Effects of Whole Body Vibration

  • Lee, Soo-Jin;Roh, Soo-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.297-301
    • /
    • 2013
  • Objective: The purpose of this study is to review the hazards of whole body vibration(WBV) and prevent human injuries due to WBV. Background: Vibrations that shake the whole body in vehicles and vessels is WBV. Vibration at a specific frequency, and intensity in the human body can act as a hazard. But, it has not yet done enough research about effects of WBV. Method: We analyzed and reviewed occupational or ergonomic papers published past 30 years. Results: Exposure to whole body vibration can cause permanent physical injury or damage of the nervous system. In addition, it may cause problem in the cardiovascular system, digestive system, musculoskeletal system, endocrine system, reproductive system, and psychological system. The effect of vibration depends on its acceleration, duration, frequency, and direction. Conclusion: WBV-exposed human body experience a high risk of some illnesses such as lumbar spinal disorders. Some workers(bus drivers, truck drivers and heavy equipment operators) are the high risk population exposed to WBV. Application: The results of this study might help to judge and prevent occupational disease caused by WBV.

A Study on the Measurement of Whole-Body Vibration in Some Coal-fired Power Plant Workers

  • Heo, Seung-Moo;Lee, Yun Keun;Park, Hee Sok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.341-344
    • /
    • 2013
  • Objective: This study measured and evaluated the characteristics of the whole body vibration experienced in some coal-fired power plant in Korea. Background: Few studies have been carried out in Korea about the effects of whole body vibration of power plants on humans. Method: The evaluation scheme suggested by the Law of Noise and Vibration Control was applied. Results: It was found that 28.9% of total measurement points were above the limit suggested by the law. Conclusion: Many workers are exposed to whole body vibration during their job completion, and more efforts should be applied to prevention and control of the plat vibration.

Evaluating Methods of Vibration Exposure and Ride Comfort in Car

  • Park, Se Jin;Subramaniyam, Murali
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.381-387
    • /
    • 2013
  • Objective: This paper studies the method of measuring whole-body vibration in the car and terms associated. Background: Human exposure to vibration can be broadly classified as localized and whole-body vibration. The whole-body vibration affects the entire body of the exposed person. It is mainly transmitted through the seat surfaces, backrests, and through the floor to an individual sitting in the vehicle. It can affect the comfort, performance, and health of individuals. Method: Human responses to whole-body vibration can be evaluated by two main standards such as ISO 2631 and BS 6841. The vibration is measured at 8 axes - three translations at feet, 3 translations of hip and two translations of back proposed by Griffin. B&K's sensors used in this study are the 3-axes translational acceleration sensor to measure the translational accelerations at the hip, back and foot. Results: The parameters associated with the whole-body vibration in the car are frequency weightings, frequency weighted root-mean-square, vibration dose values, maximum transient vibration value, seat effective amplitude transmissibility, ride values and ride comfort. Conclusion: Studied the evaluating methods of vibration exposure and ride comfort. Application: Evaluation of whole-body vibration in the car.

Study of Apparent Mass and Apparent Eccentric Mass to Vertical Whole-body Vibration by Using Strain-gage Type Six-axis Force Plate (6축 힘측정판을 이용한 수직방향 전신진동에 대한 겉보기질량 및 겉보기편심질량에 대한 고찰)

  • Jeon, Gyeoung-Jin;Kim, Min-Seok;Ahn, Se-Jin;Jeong, Weui-Bong;Yoo, Wan-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.897-904
    • /
    • 2011
  • When whole-body is exposed to vertical vibration, asymmetry shape of human body affects the response on the translational(fore-aft, lateral, vertical) and rotational(roll, pitch, yaw) motion. While the translational motion has been studied with various titles, it has been rare to study the rotational motion of human body exposed to vertical excitation because of lack of experimental equipment. This study was performed by using a 6-axis force plate installing strain gage type sensors for the rotational response. Sixteen male subjects were exposed to vertical vibration on rigid seat in order to investigate apparent mass of three translational motion and apparent eccentric mass of three rotational motion. Random signal was generated to make excitation vibration which was on an effective frequency range of 3~40 Hz, and magnitude of 0.224 m/$s^2$ r.m.s. The frequency range and magnitude used was selected for the vibration of passenger vehicle on idling condition. As the result, cross-axis apparent masses of fore-and-aft and lateral direction were not significant showing 20 % and 3 % of vertical apparent mass relatively. And apparent eccentric mass of pitch motion was dominant when compared to that of roll and yaw motion, which is reasoned by asymmetry direction of human body sitting on a seat.

Development of 12-Axis Measurement system for Assessing Exposed Whole-Body Vibration (12축 인체 피폭 진동 측정장치 개발)

  • 정완섭;서재갑;김철중;은희준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.25-28
    • /
    • 1996
  • This paper addresses the issues and difficulties encountered in developing a 12-axis measurement system for the assessment of whole-body vibration exposed from the body contact area. The contents of related survey work and the ideas from Professor Griffin in ISVR, that have led to its successful development, are introduced here. The developed 12-axis measurement system is shown to satisfy the international standards of ISO 2631 and BS 6841 in EC. This system is expected to play a key role in assessing the ride quality of passenger cars that is rapidly becomes much interest in Korean car-makers and tyre-makers.

  • PDF

Whole-Body Vibration Exposure vis-à-vis Musculoskeletal Health Risk of Dumper Operators Compared to a Control Group in Coal Mines

  • Kumar, Vivekanand;Palei, Sanjay K.;Karmakar, Netai C.;Chaudhary, Dhanjee K.
    • Safety and Health at Work
    • /
    • v.13 no.1
    • /
    • pp.73-77
    • /
    • 2022
  • Background: Whole-body vibration (WBV) exposure of coal mine dumper operators poses numerous health hazards. The case-control study was aimed at assessing the relative musculoskeletal health risk of dumper operators' exposure to WBV with reference to the nonexposed group. Methods: Measurements of WBV exposure were taken at the operator-seat interface using a human vibration analyzer for 110 dumper operators in three coal mines. This vibration measurement was supplemented by a questionnaire survey of 110 dumper operators exposed to WBV and an equal number of workers not exposed to WBV. The relative risk of musculoskeletal disorders (MSDs) has been assessed through the case-control study design. Results: ISO guidelines were used to compare the health risk. It was observed that the prevalence of pain in the lower back was 2.52 times more in the case group compared to the control group. The case group of Mine-2 was 2.0 times more prone to vibration hazards as compared to Mine-3. Conclusion: The case group is more vulnerable to MSDs than the control group. The on-site measurement as well as the response of the dumper operators during the questionnaire survey corroborates this finding.

Measurement and Assessment Methods of Vibration Exposed to Whole-body and Its Effects (전신 피폭 진동의 인체 영향 측정 및 평가 방안)

  • Cheung, Wan-Sup;Park, Yong-Hwa;Eun, Hee-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.119-124
    • /
    • 2000
  • This paper introduces the brief guidelines on general aspects of tests and experiments with human subjects. Detailed methods for measuring whole-body vibration are reviewed for those tests and experiments and compared each other. Such comparison is found to be very useful in choosing adequate methods for human related tests and experiments. Of course, it is also expected to be very meaningful to our automotive research and industrial fields that are critical to the ride quality of their products with uncomfortable acoustic noise and vibration.

  • PDF

A Study of Mathematical Human Modeling of Sitting Crew during Whole-body Vibration (해상 근무 승무원의 수학적 전신진동 해석 모델에 관한 연구)

  • Kim, Hee-Seok;Kim, Hong-Tae;Park, Jin-Hyoung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.1-15
    • /
    • 2003
  • The resonance behaviour needs be understood to identify the mechanisms responsible for the dynamic characteristics of human body, to allow for the non-linearity when predicting the influence of seating dynamics, and to predict the adverse effects caused by various magnitudes of vibration. However, there are currently no known studies on the effect of vibration magnitude on the transmissibility to thoracic or lumbar spine of the seated person, despite low back pain(LBP) being the most common ailment associated with whole-body vibration. The objective of this paper is to develop a proper mathematical human model for LBP and musculoskeletal injury of the crew in a maritime vehicle. In this study, 7 degree-of-freedom including 2 non-rigid mass representing wobbling visceral and intestine mass, is proposed. Also, when compared with previously published experimental results, the model response was found to be well-matching. When exposed to various of vertical vibration, the human model shows appreciable non-linearity in its biodynamic responses. The relationships of resonance for LBP and musculoskeletal injury during whole-body vibration are also explained.