• Title/Summary/Keyword: Exposed Aggregate Concrete

Search Result 77, Processing Time 0.036 seconds

A Study on Monolithic Expression Characteristics of Concrete Buildings With focus on insulated lightweight aggregate concrete (콘크리트 건축물의 모놀리스적 표현특성에 관한 연구 단열경량골재콘크리트를 중심으로)

  • Won, Kyoung-Sop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.363-373
    • /
    • 2018
  • In today's diversified society, it is hard to know which building style represents the architectural style of the time. The simplicity found in monolithic-style buildings forms a symmetrical point with fairly complex structure, and its value can be acknowledged. This study analyzes buildings made of insulating lightweight aggregate concrete in the early 21st century, defines the concept of monolithic expression, and examines how these characteristics are expressed in the space, forms, and structural methods in construction. Unlike a multi-layered exterior wall system, which features multiple layers composed of a variety of materials, the exterior walls built with insulating lightweight aggregate concrete comes in a lump form with a mold form that is tightly filled with concrete as a single material and is monolithic. This is attributed to the creation of spaces characterized by the homogeneity of inner and outer spaces with the use of the same material, continuity of the surface as solidity, spatial characteristics of the stereotomic construction, expression of materiality with the use of exposed concrete, and the contrast of the lump and the space. This not only reveals formal characteristics that expose a discourse about monolithic architecture in contemporary architecture but also provide an opportunity to extend the range of discussion to structures and materials and even to their effects on space.

Comparison of Alkali-Silica Reactivity for Mortar Bar and Concrete Prism Specimens Using Crushed Aggregates in Korea (국내 쇄석골재를 사용한 모르타르 봉 및 콘크리트 각주 시험편의 알칼리-실리카 반응성 비교)

  • Kim, Seong-Kwon;Yun, Kyong-Ku;Hur, In
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.93-99
    • /
    • 2012
  • PURPOSES: The purpose of this study is to compare the alkali-silica reactivity for mortar bar and concrete prism specimens using crushed aggregates of 5 types in Korea. And the alkali-silica reactivity for those aggregates are measured by chemical test method. METHODS: The alkali-silica reactivity for those aggregates was measured by chemical test method of KS F 2545, mortar-bar test of KS F 2546, accelerated mortar-bar test method of ASTM C 1260 and concrete prism test method of ASTM C 1293, relatively. RESULTS: The alkali-silica reactivity for those aggregates was verified by chemical test of KS F 2546 and accelerated mortar-bar test of ASTM C 1260. However, it was not by mortar-bar test of KS F 2546 and concrete prism test of ASTM C 1293. CONCLUSIONS: The above results showed that relationship among the four test methods were very low. The results from 3 types of test methods using cement-aggregate combinations appeared to be different. Because the environmental conditions of test methods for measuring the alkali-silica reactivity such as equivalent alkali content(external source), humidity, temperature, and times were different though the aggregates were same. Moreover, alkali-silica reactivity showed the biggest impact when alkalis were supplied form outside and exposed to environmental conditions. The accelerated mortar-bar test method seems to be most appropriate test method for concrete structures exposed to alkali environment.

Incorporation of marble waste as sand in formulation of self-compacting concrete

  • Djebien, Rachid;Hebhoub, Houria;Belachia, Mouloud;Berdoudi, Said;Kherraf, Leila
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.87-91
    • /
    • 2018
  • Concrete is the most widely used building material all over the world, because of its many technical and economic qualities. This pressure on the concrete resource causes an intensive exploitation of the quarries of aggregates, which results in a exhaustion of these and environmental problems. That is why recycling and valorization of materials are considered as future solutions, to fill the deficit between production and consumption and to protect the environment. This study is part of the valorization process of local materials, which aims to reuse marble waste as fine aggregate (excess loads of marble waste exposed to bad weather conditions) available in the marble quarry of Fil-fila (Skikda, East of Algeria) in the manufacture of self-compacting concretes. It consists of introducing the marble waste as sand into the self-compacting concrete formulation, with variable percentages (25%, 50%, 75% and 100%) and to study the development of its properties both in fresh state (air content, density, slump flow, V-funnel, L-box and sieve stability) as well as the hardened one (compressive strength and flexural strength). The results obtained showed us that marble wastes can be used as sand in the manufacture of self compacting concretes.

Prediction of residual mechanical behavior of heat-exposed LWAC short column: a NLFE model

  • Obaidat, Yasmeen T.;Haddad, Rami H.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.265-280
    • /
    • 2016
  • A NLFE model was proposed to investigate the mechanical behavior of short columns, cast using plain or fibrous lightweight aggregate concrete (LWAC), and subjected to elevated temperatures of up to $700^{\circ}C$. The model was validated, before its predictions were extended to study the effect of other variables, not studied experimentally. The three-dimensional NLFE model was developed using ANSYS software and involved rational simulation of thermal mechanical behavior of plain and fibrous LWAC as well as longitudinal and lateral steel reinforcement. The prediction from the NLFE model of columns' mechanical behavior, as represented by the stress-strain diagram and its characteristics, compared well with the experimental results. The predictions of the proposed models, considering wide range of lateral reinforcement ratios, confirmed the behaviors observed experimentally and stipulated the importance of steel confinement in preserving post-heating mechanical properties of plain and fibrous LWAC columns, being subjected to high temperature.

A state-of-the-art analysis of fresh, mechanical, durability and microstructural characterization of wastewater concrete

  • Nabil Ben Kahla;Ali Raza;Muhammad Arshad;Ahmed Babeker Elhag
    • Advances in concrete construction
    • /
    • v.17 no.2
    • /
    • pp.93-110
    • /
    • 2024
  • The process of concrete production consumes an immense volume of water, with approximately one billion metric tons of freshwater being utilized for tasks such as aggregate washing, fresh concrete production, and concrete curing. The accessibility of clean water for the public is hindered by the limited availability of water resources, primarily due to the rapid expansion of industries such as tanneries, stone quarries, and concrete manufacturing. These industries not only consume substantial amounts of freshwater but also generate significant volumes of various types of waste. Therefore, the use of fresh water in concrete production should be minimized. Few studies have reviewed the production of concrete using wastewater to derive practical and applicable findings for the industry. Thus, this study thoroughly explores the physical and chemical effects of wastewater on concrete, examining aspects like durability, hardened properties, and rheological characteristics. It identifies key factors that can compromise concrete properties when exposed to wastewater. The scarcity of research on integrating wastewater into concrete production underscores the urgent necessity for innovative approaches and methodologies in this field. While the inclusion of wash water typically reduces the workability of fresh concrete, it often enhances its compressive strength. Notably, significant improvements have been observed when using tertiary processed wastewater, wash water, polyvinyl alcohol-based wash water (PVAW), and reclaimed water in the concrete mixing process. The application of tertiary treatment to wastewater resulted in a notable enhancement of compressive strength, showing increases of up to 7%. In contrast, wastewater treated through secondary methods experienced a decline in strength ranging from 9% to 18% over a period of six months. However, the use of reclaimed wastewater demonstrated an improvement in strength by 8% to 17%, depending on the concentration level ranging from 25% to 100%. In contrast, the utilization of secondary processed wastewater and industrial water has a minimal impact on the concrete's strength.

Engineering Performance and Applicability of Eco-Friendly Concrete for Artificial Reefs Using Electric Arc Furnace Slags (전기로 슬래그를 활용한 인공리프용 친환경콘크리트의 공학적 성능 및 적용성)

  • Jo, Young-Jin;Choi, Se-Hyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.533-544
    • /
    • 2015
  • Unlike the concrete structure built on land, that exposed to the marine environment is greatly degraded in durability due to the exposure to not only the physical action caused by sea wind, tide, and wave, but also the harsh conditions, including the chemical erosion and freeze-thaw which result from $SO_4{^{2-}}$, $Cl^-$ and $Mg^{2+}$ ions in seawater. In the process of the large scaled construction of submerged concrete structures, of course environmental hazardous substance, such as alkaline (pH) and heavy metals, may be leached. Thus, this issue needs to be adequately reviewed and studied. Therefore, this study attempted to develop a CSA (Calcium Sulfo Aluminate) activator using electric arc furnace reducing slags, as well as the eco-friendly concrete for artificial reefs using electric arc furnace oxidizing slag as aggregate for concrete. The strength properties of the eco-friendly concrete exposed to the marine environment were lower than those of the normal concrete by curing 28 days. This suggest that additional studies are needed to improve the early strength of the eco-friendly concrete. With respect to seawater resistance of the eco-friendly concrete, the average strength loss against 1 year of curing days reached 8-9%. the eco-friendly concrete using high volume of ground granulated blast furnace slags and high specific gravity of electronic arc furnace oxidizing slag demonstrated the sufficient usability as a freeze-thaw resistant material. With respect to heavy metal leaching properties of the eco-friendly concrete, heavy metal substances were immobilized by chemical bonding in the curing process through the hydration of concrete. Thus, heavy metal substances were neither identified at or below environmental hazard criteria nor detected, suggesting that the eco-friendly concrete is safe in terms of leaching of hazardous substances.

Combined effect of lightweight fine aggregate and micro rubber ash on the properties of cement mortar

  • Ibrahim, Omar Mohamed Omar;Tayeh, Bassam A.
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.537-546
    • /
    • 2020
  • Exterior walls in buildings are exposed to various forms of thermal loads, which depend on the positions of walls. Therefore, one of the efficient methods for improving the energy competence of buildings is improving the thermal properties of insulation plaster mortar. In this study, lightweight fine aggregate (LWFA) and micro rubber ash (MRA) from recycled tires were used as partial replacements for sand. The flow ability, unit weight, compressive strength, tensile strength, thermal conductivity (K-value), drying shrinkage and microstructure scan of lightweight rubberized mortar (LWRM) were investigated. Ten mixtures of LWRM were prepared as follows: traditional cement mortar (control mixture); three mixes with different percentages of LWFA (25%, 50% and 75%); three mixes with different percentages of MRA (2.5%, 5% and 7.5%); and three mixes consisting both types with determined ratios (25% LWFA+5% MRA, 50% LWFA+5% MRA and 75% LWFA+5% MRA). The flow ability of the mortars was 22±2 cm, and LWRM contained LWFA and MRA. The compressive and tensile strength decreased by approximately 64% and 57%, respectively, when 75% LWFA was used compared with those when the control mix was used. The compressive and tensile strength decreased when 5% MRA was used. By contrast, mixes with determined ratios of LWFA and MRA affected reduced unit weight, K-value and dry shrinkage.

The Variations on The Fire Resistance of High Strength Concrete Column Incorporating Organic Fiber with Assessment Methods (유기 섬유 혼입 고강도 콘크리트 부재의 평가 방법에 따른 내화성능 변화에 관한 연구)

  • Lee, Seung-Hoon;Park, Chan-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.945-948
    • /
    • 2008
  • Fire resistance is a measure of the ability of building element to resist a fire. For concrete columns, the fire resistance depends on many factors, including strength, density, and moisture content of concrete, fire intensity, column size and shape, reinforcement detail, loading condition, and aggregate type etc. However, it is well-known that the high strength concrete (HSC) is more susceptible to spalling than normal strength concrete (NSC) and the behaviour of HSC column exposed to fire is significantly affected by the spalling. Recently, as one of the measures to reduce the spalling of HSC, incorporating polypropylene(PP) fiber has been investigated and successfully used in construction fields. However, the establishment of assessment method on the fire resistance of HSC column is very important as well as the improvement of fire performance of HSC. In this study, the variations on the fire resistance of HSC column with assessment methods was studied for the columns controlled the concrete spalling by PP fiber.

  • PDF

Strength Properties of High-Strength Concrete Exposed at High Temperature (고온을 받은 고강도 콘크리트의 강도특성)

  • 윤현도;김규용;한병찬
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.698-707
    • /
    • 2002
  • A review is presented of experimental studies on the strength performance of concrete exposed at short-term and rapid heating as in a fire and after cooling. Emphasis is placed on concretes with high original compressive strengths, that is, high-strength concrete(HSC). The compressive strength-temperature relationships from the reviewed test programs are distinguished by the test methods used in obtaining the data(unstressed, unstressed residual strength, and stressed tests) and by the aggregate types(normal or lightweight), The compressive strength properties of HSC vary differently with temperature than those of NSC. HSC have higher rates of strength loss than lower strength concrete in the temperature range of between 20$^{\circ}C$ to about 400$^{\circ}C$. These difference become less significant at temperatures above 400$^{\circ}C$ compressive strengths of HSC at 800$^{\circ}C$ decrease to about 30 % of the original room temperature strength. A comparison of lest results with current code provisions on the effects of elevated temperatures on concrete compressive strength and elastic modulus shows that the CEN Eurocodes and the CEB provisions are unconservative.

A Study on Durability of Concrete According to Mix Condition by Marine Environment Exposure Experiment (해양환경폭로실험을 통한 배합조건별 콘크리트의 내구성에 관한 연구)

  • Jo, Young-Jin;Choi, Byung-Wook;Choi, Jae-Seok;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4542-4551
    • /
    • 2013
  • Recently, much attention has focused on the study of eco-friendly concrete using recycled by-products for protecting marine ecosystem and durability of concrete exposed to marine condition. This study evaluated the durabilities of 4 different type of concrete mixtures(Control, Marine, Porous, New slag) with the seawater resistance by marine environment exposure experiment and freeze-thaw resistance, resistance to chloride ion penetration considering severe deterioration environment. In this study, we conducted seawater resistance using compressive strength according to the age(7/28/56 days) of specimen and curing conditions(standard(fresh water), tidal, immersion, artificial seawater). The results show that compressive strength of concrete exposed to marine environment exposure condition was lower than those of the standard curing condition. Also, compressive strength of New slag using eco-friendly materials for protecting marine ecosystem was lower than those of other concretes, there is need to improve the performance of New slag. The results for freeze-thaw resistance showed that all mixtures have excellent, but the Porous and New slag were lower than others. Also, the more improved resistance to chloride ion penetration than those of the Marine was measured in the New slag regardless of curing condition.