• Title/Summary/Keyword: Exponentiation algorithm

Search Result 67, Processing Time 0.026 seconds

Efficient Radix-4 Systolic VLSI Architecture for RSA Public-key Cryptosystem (RSA 공개키 암호화시스템의 효율적인 Radix-4 시스톨릭 VLSI 구조)

  • Park Tae geun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1739-1747
    • /
    • 2004
  • In this paper, an efficient radix-4 systolic VLSI architecture for RSA public-key cryptosystem is proposed. Due to the simple operation of iterations and the efficient systolic mapping, the proposed architecture computes an n-bit modular exponentiation in n$^{2}$ clock cycles since two modular multiplications for M$_{i}$ and P$_{i}$ in each exponentiation process are interleaved, so that the hardware is fully utilized. We encode the exponent using Radix-4. SD (Signed Digit) number system to reduce the number of modular multiplications for RSA cryptography. Therefore about 20% of NZ (non-zero) digits in the exponent are reduced. Compared to conventional approaches, the proposed architecture shows shorter period to complete the RSA while requiring relatively less hardware resources. The proposed RSA architecture based on the modified Montgomery algorithm has locality, regularity, and scalability suitable for VLSI implementation.

Design of high-speed RSA processor based on radix-4 Montgomery multiplier (래딕스-4 몽고메리 곱셈기 기반의 고속 RSA 연산기 설계)

  • Koo, Bon-Seok;Ryu, Gwon-Ho;Chang, Tae-Joo;Lee, Sang-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.6
    • /
    • pp.29-39
    • /
    • 2007
  • RSA is one of the most popular public-key crypto-system in various applications. This paper addresses a high-speed RSA crypto-processor with modified radix-4 modular multiplication algorithm and Chinese Remainder Theorem(CRT) using Carry Save Adder(CSA). Our design takes 0.84M clock cycles for a 1024-bit modular exponentiation and 0.25M cycles for a 512-bit exponentiations. With 0.18um standard cell library, the processor achieves 365Kbps for a 1024-bit exponentiation and 1,233Kbps for two 512-bit exponentiations at a 300MHz clock rate.

Implementation of High-radix Modular Exponentiator for RSA using CRT (CRT를 이용한 하이래딕스 RSA 모듈로 멱승 처리기의 구현)

  • 이석용;김성두;정용진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.10 no.4
    • /
    • pp.81-93
    • /
    • 2000
  • In a methodological approach to improve the processing performance of modulo exponentiation which is the primary arithmetic in RSA crypto algorithm, we present a new RSA hardware architecture based on high-radix modulo multiplication and CRT(Chinese Remainder Theorem). By implementing the modulo multiplier using radix-16 arithmetic, we reduced the number of PE(Processing Element)s by quarter comparing to the binary arithmetic scheme. This leads to having the number of clock cycles and the delay of pipelining flip-flops be reduced by quarter respectively. Because the receiver knows p and q, factors of N, it is possible to apply the CRT to the decryption process. To use CRT, we made two s/2-bit multipliers operating in parallel at decryption, which accomplished 4 times faster performance than when not using the CRT. In encryption phase, the two s/2-bit multipliers can be connected to make a s-bit linear multiplier for the s-bit arithmetic operation. We limited the encryption exponent size up to 17-bit to maintain high speed, We implemented a linear array modulo multiplier by projecting horizontally the DG of Montgomery algorithm. The H/W proposed here performs encryption with 15Mbps bit-rate and decryption with 1.22Mbps, when estimated with reference to Samsung 0.5um CMOS Standard Cell Library, which is the fastest among the publications at present.

New Multiplier using Montgomery Algorithm over Finite Fields (유한필드상에서 몽고메리 알고리즘을 이용한 곱셈기 설계)

  • 하경주;이창순
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.190-194
    • /
    • 2002
  • Multiplication in Galois Field GF(2/sup m/) is a primary operation for many applications, particularly for public key cryptography such as Diffie-Hellman key exchange, ElGamal. The current paper presents a new architecture that can process Montgomery multiplication over GF(2/sup m/) in m clock cycles based on cellular automata. It is possible to implement the modular exponentiation, division, inversion /sup 1)/architecture, etc. efficiently based on the Montgomery multiplication proposed in this paper. Since cellular automata architecture is simple, regular, modular and cascadable, it can be utilized efficiently for the implementation of VLSI.

  • PDF

A New Additi$on_{}$traction Chain Algorithm for East Computation over Elliptic Curve Cryptosystem (타원곡선 암호시스템에서의 빠른 연산을 위한 새로운 덧셈/뺄셈 사슬 알고리즘)

  • 홍성민;오상엽;윤현수
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1995.11a
    • /
    • pp.151-162
    • /
    • 1995
  • 보다 짧은 길이의 덧셈/뺄셈 사슬($addition_{traction-chain}$)을 찾는 문제는 정수론을 기반으로 하는 많은 암호시스템들에 있어서 중요한 문제이다. 특히, RSA에서의 모듈라멱승(modular exponentiation)이나 타원 곡선(elliptic curve)에서의 곱셈 연산시간은 덧셈사슬(addition-chain) 또는 덧셈/뺄셈 사슬의 길이와 정비례한다 본 논문에서는 덧셈/뻘셈 사슬을 구하는 새로운 알고리즘을 제안하고, 그 성능을 분석하여 기존의 방법들과 비교한다. 본 논문에서 제안하는 알고리즘은 작은윈도우(small-window) 기법을 기반으로 하고, 뺄셈을사용해서 윈도우의 개수를 최적화함으로써 덧셈/뺄셈 사슬의 길이를 짧게 한다. 본 논문에서 제안하는 알고리즘은 512비트의 정수에 대해 평균길이 595.6의 덧셈/뺄셈 사슬을 찾는다.

  • PDF

Design of Montgomery Modular Multiplier based on Systolic Array (시스토릭 어레이를 이용한 Montgomery 모듈라 곱셈기 설계)

  • 하재철;문상재
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.1
    • /
    • pp.135-146
    • /
    • 1999
  • Most public key cryptosystems are constructed based on a modular exponentiation, which is further decomposed into a series of modular multiplications. We design a new systolic array multiplier to speed up modular multiplication using Montgomery algorithm. This multiplier with simple circuit for each processing element will save about 14% logic gates of hardware and 20% execution time compared with previous one.

Modified Baby-Step Giant-Step Algorithm for Discrete Logarithm (최단 보폭-최장 보폭 이산대수 알고리즘의 변형)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.8
    • /
    • pp.87-93
    • /
    • 2013
  • A baby-step giant-step algorithm divides n by n blocks that possess $m={\lceil}\sqrt{n}{\rceil}$ elements, and subsequently computes and stores $a^x$ (mod n) for m elements in the 1st block. It then calculates mod n for m blocks and identifies each of them with those in the 1st block of an identical elemental value. This paper firstly proposes a modified baby-step giant-step algorithm that divides ${\lceil}m/2{\rceil}$ blocks with m elements applying $a^{{\phi}(n)/2}{\equiv}1(mod\;n)$ and $a^x(mod\;n){\equiv}a^{{\phi}(n)+x}$ (mod n) principles. This results in a 50% decrease in the process of the giant-step. It then suggests a reverse baby-step giant step algorithm that performs and saves ${\lceil}m/2{\rceil}$ blocks firstly and computes $a^x$ (mod n) for m elements. The proposed algorithm is found to successfully halve the memory and search time of the baby-step giant step algorithm.

Efficient Computation of Eta Pairing over Binary Field with Vandermonde Matrix

  • Shirase, Masaaki;Takagi, Tsuyoshi;Choi, Doo-Ho;Han, Dong-Guk;Kim, Ho-Won
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.129-139
    • /
    • 2009
  • This paper provides an efficient algorithm for computing the ${\eta}_T$ pairing on supersingular elliptic curves over fields of characteristic two. In the proposed algorithm, we deploy a modified multiplication in $F_{2^{4n}}$ using the Vandermonde matrix. For F, G ${\in}$ $F_{2^{4n}}$ the proposed multiplication method computes ${\beta}{\cdot}F{\cdot}G$ instead of $F{\cdot}G$ with some ${\beta}$ ${\in}$ $F^*_{2n}$ because ${\beta}$ is eliminated by the final exponentiation of the ${\eta}_T$ pairing computation. The proposed multiplication method asymptotically requires only 7 multiplications in $F_{2^n}$ as n ${\rightarrow}$ ${\infty}$, while the cost of the previously fastest Karatsuba method is 9 multiplications in $F_{2^n}$. Consequently, the cost of the ${\eta}_T$ pairing computation is reduced by 14.3%.

  • PDF

Design and FPGA Implementation of a High-Speed RSA Algorithm for Digital Signature (디지털 서명을 위한 고속 RSA 암호 시스템의 설계 및 FPGA 구현)

  • 강민섭;김동욱
    • The KIPS Transactions:PartC
    • /
    • v.8C no.1
    • /
    • pp.32-40
    • /
    • 2001
  • In this paper, we propose a high-speed modular multiplication algorithm which revises conventional Montgomery's algorithm. A hardware architecture is also presented to implement 1024-bit RSA cryptosystem for digital signature based on the proposed algorithm. Each iteration in our approach requires only one addition operation for two n-bit integers, while that in Montgomery's requires two addition operations for three n-bit integers. The system which is modelled in VHDL(VHSIC Hardware Description Language) is simulated in functionally through the use of $Synopsys^{TM}$ tools on a Axil-320 workstation, where Altera 10K libraries are used for logic synthesis. For FPGA implementation, timing simulation is also performed through the use of Altera MAX + PLUS II. Experimental results show that the proposed RSA cryptosystem has distinctive features that not only computation speed is faster but also hardware area is drastically reduced compared to conventional approach.

  • PDF

Baby-Step 2k-ary Adult-Step Algorithm for Symmetric-Key Decryption (대칭키 해독을 위한 아기걸음 2k-ary 성인걸음 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.23-29
    • /
    • 2015
  • The baby-step giant-step algorithm seeks b in a discrete logarithm problem when a,c,p of $a^b{\equiv}c$(mod p) are already given. It does so by dividing p by m block of $m={\lceil}{\sqrt{p}}{\rceil}$ length and letting one giant walk straight toward $a^0$ with constant m strides in search for b. In this paper, I basically reduce $m={\lceil}{\sqrt{p}}{\rceil}$ to p/l, $a^l$ > p and replace a giant with an adult who is designed to walk straight with constant l strides. I also extend the algorithm to allow $2^k$ adults to walk simultaneously. As a consequence, the proposed algorithm quarters the execution time of the basic adult-walk method when applied to $2^k$, (k=2) in the range of $1{\leq}b{\leq}p-1$. In conclusion, the proposed algorithm greatly shorten the step number of baby-step giant-step.