• Title/Summary/Keyword: Exponential stability

Search Result 227, Processing Time 0.029 seconds

MITTAG-LEFFLER STABILITY OF SYSTEMS OF FRACTIONAL NABLA DIFFERENCE EQUATIONS

  • Eloe, Paul;Jonnalagadda, Jaganmohan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.977-992
    • /
    • 2019
  • Mittag-Leffler stability of nonlinear fractional nabla difference systems is defined and the Lyapunov direct method is employed to provide sufficient conditions for Mittag-Leffler stability of, and in some cases the stability of, the zero solution of a system nonlinear fractional nabla difference equations. For this purpose, we obtain several properties of the exponential and one parameter Mittag-Leffler functions of fractional nabla calculus. Two examples are provided to illustrate the applicability of established results.

GLOBAL EXPONENTIAL STABILITY OF BAM FUZZY CELLULAR NEURAL NETWORKS WITH DISTRIBUTED DELAYS AND IMPULSES

  • Li, Kelin;Zhang, Liping
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.211-225
    • /
    • 2011
  • In this paper, a class of bi-directional associative memory (BAM) fuzzy cellular neural networks with distributed delays and impulses is formulated and investigated. By employing an integro-differential inequality with impulsive initial conditions and the topological degree theory, some sufficient conditions ensuring the existence and global exponential stability of equilibrium point for impulsive BAM fuzzy cellular neural networks with distributed delays are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on the delay kernel functions and system parameters. It is believed that these results are significant and useful for the design and applications of BAM fuzzy cellular neural networks. An example is given to show the effectiveness of the results obtained here.

EXISTENCE AND STABILITY OF ALMOST PERIODIC SOLUTIONS FOR A CLASS OF GENERALIZED HOPFIELD NEURAL NETWORKS WITH TIME-VARYING NEUTRAL DELAYS

  • Yang, Wengui
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.1051-1065
    • /
    • 2012
  • In this paper, the global stability and almost periodicity are investigated for generalized Hopfield neural networks with time-varying neutral delays. Some sufficient conditions are obtained for the existence and globally exponential stability of almost periodic solution by employing fixed point theorem and differential inequality techniques. The results of this paper are new and complement previously known results. Finally, an example is given to demonstrate the effectiveness of our results.

Conditions for the exponential stability of linear nonautonomous systems

  • Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.420-424
    • /
    • 1993
  • New conditions for the exponential stability for both linear nonautnomous finite and a class of infinite dimensional systems described by parabolic partial differential equations (PDE's) are derived. The results for the parabolic systems are derived via semigroup approach.

Exponential Asymptotic Stability in Perturbed Systems

  • Choi, Sung Kyu;Choi, Cheong Song
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.3 no.1
    • /
    • pp.69-81
    • /
    • 1990
  • In this paper we investigate the problem of exponential asymptotic stability (EAS) in perturbed nonlinear systems of the differential system x' = f(t, x). Also, a simple method for constructing Liapunov functions is used to prove a kind of Massera type converse theorem.

  • PDF

Existence and Exponential Stability for a Thermoviscoelastic Equation with Boundary Output Feedback Control

  • Kang, Yong Han
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.517-527
    • /
    • 2016
  • In this paper, we consider a thermoviscoelastic equation which has one end fixed and output feedback control at the other end. We prove the existence of solutions using the Galerkin method and then investigate the exponential stability of solutions by using multiplier technique.

APPROXIMATE PEXIDERIZED EXPONENTIAL TYPE FUNCTIONS

  • Lee, Young-Whan
    • The Pure and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.193-198
    • /
    • 2012
  • We show that every unbounded approximate Pexiderized exponential type function has the exponential type. That is, we obtain the superstability of the Pexiderized exponential type functional equation $$f(x+y)=e(x,y)g(x)h(y)$$. From this result, we have the superstability of the exponential functional equation $$f(x+y)=f(x)f(y)$$.

Novel Results for Global Exponential Stability of Uncertain Systems with Interval Time-varying Delay

  • Liu, Yajuan;Lee, Sang-Moon;Kwon, Oh-Min;Park, Ju H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1542-1550
    • /
    • 2013
  • This paper presents new results on delay-dependent global exponential stability for uncertain linear systems with interval time-varying delay. Based on Lyapunov-Krasovskii functional approach, some novel delay-dependent stability criteria are derived in terms of linear matrix inequalities (LMIs) involving the minimum and maximum delay bounds. By using delay-partitioning method and the lower bound lemma, less conservative results are obtained with fewer decision variables than the existing ones. Numerical examples are given to illustrate the usefulness and effectiveness of the proposed method.

STABILITY OF IMPULSIVE CELLULAR NEURAL NETWORKS WITH TIME-VARYING DELAYS

  • Zhang, Lijuan;Yu, Lixin
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1327-1335
    • /
    • 2011
  • This paper demonstrates that there is a unique exponentially stable equilibrium state of a class of impulsive cellular neural network with delays. The analysis exploits M-matrix theory and generalized comparison principle to derive some easily verifiable sufficient conditions for the global exponential stability of the equilibrium state. The results extend and improve earlier publications. An example with its simulation is given for illustration of theoretical results.