• Title/Summary/Keyword: Explosive strength

Search Result 161, Processing Time 0.025 seconds

A Study on the Explosive Sleeving of A Repair for Defective Tube/Tubeplate on the Nuclear Steam Generator (원자력 증기발생기 결함 세관 보수용 폭발 sleeving에 관한 연구)

  • 이병일;강정윤;이상래
    • Explosives and Blasting
    • /
    • v.17 no.4
    • /
    • pp.8-17
    • /
    • 1999
  • Unfortunately leaks occur in heat exchangers periodically, usually at the tube to tubeplate joint. The usual method of repair is to plug off the defective area and isolate the tubes of concern from the circuit. If the leaks continua the thermal capacity of the units is progressively reduced and for this reason the alternative of using an internal bridging sleeve has been examined. This paper discusses the overall development activities that has been found necessary to bring this repair procedure to a successful conclusion for use on the nuclear steam generator. In this work we have investigated optimum explosives and explosive quality, explosive sleeving's thickness, the design of sheath stress relieving heat treatment pull-out load, hydraulic leakage, stress corrosion cracking properties. The results obtain are as follows : (1) The optimum explosives and explosive qualities are PETN and about 15~40 gr/ft of explosive sleeving in nuclear steam generator. (2) Explosive sleeving's thickness is 1.1~l.4mm, If groove of 0.35mm formed in sleeve outside existed, For the hydraulic leakage is go up, explosive sleeving of formed groove are applicate tube and turnplate. (3) If the stress relieving heat treatment are experiment in $750^\circ{C}$, $850^\circ{C}$, 15 minutes Pull-out strength of sleeving 1,500~2,300kg, hydraulic leakage is $250kg/cm^2$.

  • PDF

Relation Between Water Content Ratio and Fire Performance of Class 1 Structural Light Weight Aggregate Concrete (1종 경량골재콘크리트의 함수율과 내화특성)

  • Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.321-327
    • /
    • 2014
  • Structural light weight aggregate concrete are made with both coarse and fine light weight aggregates, but it is common with the high strength concrete to replace all or part with normal weight sand be called class 1 structural light weight aggregate concrete. Fire resistance of structural light weight aggregate concrete are determined by properties of high water content ratio and explosive spalling. Especially, structural light weight aggregate concrete is occurred serious fire performance deterioration by explosive spalling stem from thermal stress and water vapor pressure. This study is concerned with experimentally investigating fire resistance of class 1 structural light weight concrete. From the test result, class 1 structural light weight concrete is happened explosive spalling. The decrease of cross section caused by explosive spalling made sharp increasing gradient of inner temperature.

Study on the High Temperature Properties of Fireproof Mortar Using Various Types of Fine Aggregate (잔골재 종류에 따른 내화피복용 모르타르의 고온 성상에 관한 연구)

  • Lim, Seo-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.100-106
    • /
    • 2014
  • High strength concrete has a structural advantage as well as superior usability and durability, so that its application in building is being steadily augmented. However, in the high temperature like in a fire, the high strength concrete has extreme danger named explosive spalling. It is known that the major cause of explosive spalling is water vapour pressure inside concrete. General solution for preventing concrete from spalling include applying fire protection coats to concrete in order to control the rising temperature of members in case of fire. The purpose of this study is to investigate the high temperature properties of fireproof mortar using organic fiber and various types of fine aggregate for fire protection covering material. The results showed that addition of perlite and polypropylene fiber to mortar modifies its pore structure and reduces its density. This causes the internal temperature to rise. As a results, it is found that a new fireproof mortar can be used in the fire protection covering material in high strength concrete.

The Evaluation of Tube to Tubesheet Joint Part on Nuclear S/G (원자력 증기발생기 튜브/튜브시트 확관방법별 특성평가)

  • 심상한;배강국;김인수
    • Proceedings of the KWS Conference
    • /
    • 1996.05a
    • /
    • pp.34-37
    • /
    • 1996
  • The expanding method of tube to tubesheet joint part on neclear steam generators are classified into three classes of roller expanding, explosive expanding and hydraulic expanding. After the expanded Mock-Up specimen are made by the three expanding method. The general properties, microstructure/microvickers hardness, pull-out strength, hydraulic leak pressure, of tube to tubesheet joint part were inspected. and We evaluated the operation efficiency of expansion, reproduction of expanded joint about three expanding method. Through the overall evaluation of tube to tubesheet joint part, The hydraukic expanding and explosive expanding could be certificated more useful expanding method.

  • PDF

A Study on the Structural Fire Resistance Performance Design of RC Structural according to the Explosive Spalling(I) - The Countermeasures of General Construction Company - (폭렬현상을 고려한 RC구조물의 PBD기반 구조내화설계 기술개발에 관한 연구(I) - 국내외 주요 건설사의 대응방안 -)

  • Lee, Jae-Young;Kim, Se-Jong;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.195-201
    • /
    • 2008
  • When reinforced concrete is subjected to high temperature as in fire, there is deterioration in its properties of particular importance are loss in compressive strength, cracking and spalling of concrete, destruction of the bond between the cement paste and the aggregates and the gradual deterioration of the hardend cement paste. Assessment of fire-damaged concrete usually starts with visual observation of color change, cracking and spalling of the surface. In this paper, it was reported the trends of research and practical use on the Explosive Spalling Properties of the High-Strength Concrete.

  • PDF

Spalling Properties of Ring-Type Restrained Concrete by Heating Conditions (가열조건에 따른 링형 구속 콘크리트의 폭렬특성)

  • Hwang, Eui-Chul;Kim, Guy-Yong;Lee, Sang-Kyu;Son, Min-Jae;Baek, Jae-Wook;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.155-156
    • /
    • 2018
  • In this study, surface spalling and explosive spalling of ring-type ultra-high strength concrete under rapid heating and slow heating were investigated. In rapid heating, the internal temperature difference of the concrete is large, so that continuous surface spalling occurs. However, in slow heating, the difference in the internal temperature of the concrete is small, resulting in explosive spalling at a time. Since the heating condition has a great influence on the internal temperature of the concrete, it is necessary to consider the spalling of the concrete under various heating conditions.

  • PDF

The Analysis of surface free energy of RDX/EVA from contact angle measurements (접촉각 측정에 의한 RDX/EVA의 표면 에너지 해석)

  • 심정섭;김현수;이근득
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.219-230
    • /
    • 2000
  • Plastic bonded explosive(PBX) is mainly composed of the nitramine explosives, RDX, HMX, and polymer binders. When the adhesion between nitramine crystals and binder is not particularly strong and can be failed under stress, dewetting occurs rather suddenly and this leads to a significant drop in tensile strength of explosives. Mechnical property of plastic bonded explosive depends on the surface characteristics of filler and binder. In order to design for better adhesion, an understanding of the surface properties of explosive and binder is essential. In this study, 2 kinds of RDX and 4 kinds of ethylene vinyl acetate copolymers are selected, since they are widely used in many plastic bonded explosives. The technical objective of this investigation is to calculate for the surface free energy of RDX and EVA using theory of Fowkes, van Oss, Neumann approaches and Kaelble equation and to predict the interaction between filler and binder from their surface free energies.

  • PDF

The high-rate brittle microplane concrete model: Part I: bounding curves and quasi-static fit to material property data

  • Adley, Mark D.;Frank, Andreas O.;Danielson, Kent T.
    • Computers and Concrete
    • /
    • v.9 no.4
    • /
    • pp.293-310
    • /
    • 2012
  • This paper discusses a new constitutive model called the high-rate brittle microplane (HRBM) model and also presents the details of a new software package called the Virtual Materials Laboratory (VML). The VML software package was developed to address the challenges of fitting complex material models such as the HRBM model to material property test data and to study the behavior of those models under a wide variety of stress- and strain-paths. VML employs Continuous Evolutionary Algorithms (CEA) in conjunction with gradient search methods to create automatic fitting algorithms to determine constitutive model parameters. The VML code is used to fit the new HRBM model to a well-characterized conventional strength concrete called WES5000. Finally, the ability of the new HRBM model to provide high-fidelity simulations of material property experiments is demonstrated by comparing HRBM simulations to laboratory material property data.

A Study of Explosive Jet-cutting Technology by Linear Shape Charges (성형폭약에 의한 폭발절단기술에 관한 연구)

  • 이병일;박근순;공창식;김광태
    • Tunnel and Underground Space
    • /
    • v.10 no.4
    • /
    • pp.516-525
    • /
    • 2000
  • Recently, the demand for pollution-free demolition work of old reinforced concrete and steel structure has rapidly increased as the redevelopment of urban area has been accelerated. This study deals with linear shape charges for explosive jet cutting on steel structure. We have tested material and shape of steel structure, characteristics of thickness and strength, shape of linear shape charges, type of shape charges, cumulative charges, type of liner, stand-off distance, detonation method. effect of sound and vibration by air blast in explosive jet cutting method. So, We developed linear shape charges in order to take advantage of optimum explosive jet cutting condition. Shape charges were made of PETN explosives. We obtained the experimental formula to decide the amount of explosive needed for thickness of steel structure plate. There are prospects for application of the explosion curving technology under the open space conditions for dismantling the steel structure and steel bridge, scrapped old boats, which are going out of service.

  • PDF