• 제목/요약/키워드: Explosive molecule

검색결과 8건 처리시간 0.021초

A Predictive Study on Molecular and Explosive Properties of 1-Aminoimidazole Derivatives

  • Cho, Soo-Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2319-2324
    • /
    • 2011
  • Molecular structures and chemical properties of 1-aminoimidazole derivatives have been investigated at high levels of density functional theories. Heat of formation, density, explosive performances and impact sensitivities have been estimated at the global minimum of potential energy surface. As more nitro groups are introduced, the explosive performances of 1-aminoimidazole derivatives are enhanced, while the impact sensitivity becomes more sensitive. A two-dimensional plot between explosive performance and impact sensitivity has been utilized to comprehend the technical status of new explosive candidates. Based on locations in the two-dimensional plot, 1-aminodinitroimidzole isomers appears to have a potential to be good candidates for insensitive explosives, and 1-aminotrinitroimidazole may become a powerful explosive molecule whose behavior is quite close to HMX.

Optimization of Neural Networks Architecture for Impact Sensitivity of Energetic Molecules

  • Cho, Soo-Gyeong;No, Kyoung-Tai;Goh, Eun-Mee;Kim, Jeong-Kook;Shin, Jae-Hong;Joo, Young-Dae;Seong, See-Yearl
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권3호
    • /
    • pp.399-408
    • /
    • 2005
  • We have utilized neural network (NN) studies to predict impact sensitivities of various types of explosive molecules. Two hundreds and thirty four explosive molecules have been taken from a single database, and thirty nine molecular descriptors were computed for each explosive molecule. Optimization of NN architecture has been carried out by examining seven different sets of molecular descriptors and varying the number of hidden neurons. For the optimized NN architecture, we have utilized 17 molecular descriptors which were composed of compositional and topological descriptors in an input layer, and 2 hidden neurons in a hidden layer.

Standoff Raman Spectroscopic Detection of Explosive Molecules

  • Chung, Jin Hyuk;Cho, Soo Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1668-1672
    • /
    • 2013
  • We developed a standoff Raman detection system for explosive molecules (EMs). Our system was composed of reflective telescope with 310 mm diameter lens, 532 nm pulse laser, and Intensified Charge-Coupled Device (ICCD) camera. In order to remove huge background noise coming from ambient light, laser pulses with nanosecond time width were fired to target sample and ICCD was gated to open only during the time when the scattered Raman signal from the sample arrived at ICCD camera. We performed standoff experiments with military EMs by putting the detector at 10, 20 and 30 m away from the source. The standoff results were compared with the confocal Raman results. Based on our standoff experiments, we were able to observe the peaks in the range of 1200 and $1600cm^{-1}$, where vibrational modes of nitro groups were appeared. The wave numbers and shapes of these peaks may serve as good references in detecting and identifying various EMs.

메틸나이트로이미다졸 유도체의 성능-감도 이차원적 분석 (Two dimensional analysis between the performance and the sensitivity of methylnitroimidazole derivatives)

  • 임완권
    • 분석과학
    • /
    • 제28권6호
    • /
    • pp.430-435
    • /
    • 2015
  • 메틸나이트로이미다졸계 유도체들에 관한 화약 성능과 충격감도 간의 이차원 분석이 이들 물질의 효용성을 판단하기 위해 진행되었다. 화약 성능은 Cheetah 프로그램으로 계산되었으며, 충격감도는 인공신경망 연구로 예측했다. 연속적인 나이트로기의 치환이 분자들을 민감하게 하지만 메틸트라이나이트 이미다졸까지도 비교적 안전한 상태를 유지하는 것으로 예측된다. 최근에 국방과학연구소에서는 성능과 감도를 X, Y축에 도시하고 신규화약물질의 유용성을 전체적으로 분석하는 방안을 개발하였다. 이들 성능-감도 이차원 그래프에 따르면 메틸다이나이트로이미다졸계 유도체들은 둔감화약조성에 사용이 가능할 것으로 판단되고, 반면 메틸트라이나이트로이미다졸은 고폭화약조성에 사용할 수 있을 것으로 판단된다.

Phage Litmus: Biomimetic Virus-Based Colorimetric Sensors for Explosive Detection

  • 오진우
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.90.1-90.1
    • /
    • 2013
  • Nature utilizes various of the colorization process. Some species of birds can express their mood of tempers by changing their collagen structures on skin. For example, turkey can change their skin color by expansion of the collagen structures, which are associated with the distinct color changes. Here, we developed bioinspired virus-based colorimetric sensors which can be genetically tuned for target molecule. Using M 13 bacteriophage, we fabricated responsive self-assembled color matrices composed of quasi-ordered fiber bundle structures. These virus matrices can exhibit color change by stimuli through fiber bundle structure modulation. Upon exposure of volatile organic compounds, the resulting multi-colored matrices exhibited distinct color changes with different ratios that can be recognized by the naked eyes. Using the directed evolutionary approaches, we genetically engineered the virus matrix to incorporate binding motif for explosive detection (i.e., trinitrotoluene (TNT)). Through utilizing a common handheld device (i.e., iPhone), we could distinguish TNT molecules down to 20 ppb in a selective manner. Our novel biomimetic virus colorimetric sensor can overcome current limitation for low response selectivity.

  • PDF

Theoretical Studies on Nitramine Explosives with -NH2 and -F Groups

  • Zhao, Guo Zheng;Lu, Ming
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1913-1918
    • /
    • 2012
  • The nitramine explosives with $-NH_2$ and -F groups were optimized to obtain their molecular geometries and electronic structures at DFT-B3LYP/6-31+G(d) level. The theoretical molecular density (${\rho}$), heat of formation (HOF), detonation velocity ($D$) and detonation pressure ($P$), estimated using Kamlet-Jacobs equations, showed that the detonation properties of these compounds were excellent. Based on the frequencies scaled by 0.96 and the principle of statistic thermodynamics, the thermodynamic properties were evaluated, which were respectively related with the temperature. The simulation results reveal that 1,3,5,7-tetranitro-1,3,5,7-tetrazocan-2-amine (molecule B1) performs similarly to the famous explosive HMX, and 2-fluoro-1,3,5-trinitro-1,3,5-triazinane (molecule C1) and 2-fluoro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (molecule D1) outperform HMX. According to the quantitative standard of energetics and stability as an HEDC (high energy density compound), molecules C1 and D1 essentially satisfy this requirement. These results provide basic information for molecular design of novel high energetic density compounds.

Probing Organic Ligands and their Binding Schemes on Nanocrystals by Mass Spectrometric and FT-IR Spectroscopic Imaging

  • Son, Jin Gyeong;Choi, Eunjin;Piao, Yuanzhe;Han, Sang Woo;Lee, Tae Geol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.355-355
    • /
    • 2016
  • There has been an explosive development of nanocrystal (NC) synthesis and application due to their composition-dependent specific properties. Despite the composition, shape, and size of NCs foremost determine their physicochemical properties, the surface state and molecule conjugation also drastically change their characteristics. To make practical use of NCs, it is a prerequisite to understand the NC surface state and the degree to which they have been modified because the reaction occurs on the interface between the NCs and the surrounding medium. We report in here an analysis method to identify conjugated ligands and their binding states on semiconductor nanocrystals based on their molecular information. Surface science techniques, such as time-of-flight secondary-ion mass spectrometry (ToF-SIMS) and FT-IR spectroscopy, are adopted based on the micro-aggregated sampling method. Typical trioctylphosphine oxide-based synthesis methods of CdSe/ZnS quantum dots (QDs) have been criticized because of the peculiar effects of impurities on the synthesis processes. Since the ToF-SIMS technique provides molecular composition evidence on the existence of certain ligands, we were able to clearly identify the n-octylphosphonic acid (OPA) as a surface ligand on CdSe/ZnS QDs. Furthermore, the complementary use of the ToF-SIMS technique with the FT-IR technique could reveals the OPA ligands' binding state as bidentate complexes.

  • PDF

TIMP-1 in the regulation of ECM and apoptosis

  • Liu, Xu-Wen;Jung, Ki-Kyung;Kim, Hyeong-Reh-Choi
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2002년도 창립10주년기념 및 국립독성연구원 의약품동등성평가부서 신설기념 국재학술대회:생물학적 동등성과 의약품 개발 전략을 위한 국제심포지움
    • /
    • pp.89-96
    • /
    • 2002
  • The importance of apoptosis in normal development and pathogenesis has been well recognized, and explosive progress towards dissecting its commitment step has been made during the past decade. Mitochondria, Apaf-1, caspase, and bcl-2 family members play central roles in the commitment step. However, it is still unclear how upstream cell survival pathways regulate apoptosis. It is also unknown whether the bcl-2 family members have any effect on the upstream survival pathways. We have demonstrated that the anti-apoptotic gene product bcl-2 greatly induces expression of the tissue inhibitor of metalloproteinase-1 (TIMP-1) in human breast epithelial cells. Surprisingly, we found that TIMP-1, like bcl-2, is a potent inhibitor of apoptosis induced by a variety of stimuli. Functional studies indicate that TIMP-1 inhibits a classical apoptotic pathway mediated by caspases, and that focal adhesion kinase (FAK)/Pl 3-kinase and mitogen activated protein kinase (MAPK) are critical for TIMP- 1 -mediated cell survival. We also showed specific association of TIMP-1 with the cell surface. Consistently, a 150-H)a surface protein was identified in MCF10A cells that specifically binds TIMP-1. Taken together, we hypothesize that TIMP-I binding on the cell surface induces a cell survival pathway that regulates the common apoptosis commitment step. The results of these studies will address a new paradigm in the regulation of apoptosis by an extracellular molecule TIMP-1, and also greatly enhance our understanding of TIMP-1's pleiotropic activity in many physiological and pathological processes. This information may also be useful in designing more rational therapeutic interventions aimed at modulating the anti-apoptotic activity of TIMP-1 .

  • PDF