• Title/Summary/Keyword: Explosive force

Search Result 49, Processing Time 0.024 seconds

A Study on the Nylon Wire Holding and Release Mechanism for Cube Satellites by Applying Constant Holding

  • Koo, KeonWoo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.1-6
    • /
    • 2021
  • The non-explosive holding and release mechanism is used to prevent damage to the mission component caused by explosives when the deployment structure for Cube Satellites is separated. However, among the several types available, the non-explosive holding and release mechanism system using nylon wires depend on the nylon wire knot method and tightening power of the worker. Therefore, in this study, we conducted experiments with the operation of a new holding and release mechanism system by conceptualizing the Boa System Dial, which can provide a constant tightening force regardless of worker proficiency and deploying a imitational solar panel. In this study, the process of binding and unbinding with constant tension was recorded while applying the novel non-explosive holding and release mechanism using the Boa System Dial proposed. In addition, required advances are indicated for the application of the proposed system to actual Cube Satellites.

Case of Developing Analysis Model for Recoil System for Automatic Gun (자동포용 주퇴복좌장치의 해석모델 개발 사례)

  • Noh, Dae-Kyung;Kang, Young-Ky;Ji, Jae-Do;Park, Jin-Saeng;Jang, Joo-Sup
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.35-41
    • /
    • 2015
  • Recoil system for 40mm automatic gun is a device developed to absorb the shock of explosion. It is impossible to conduct pinpoint strike due to recoil if very high explosive shock, which is generated when an automatic gun fires shells, can't be absorbed. This study covers development and verification of analysis model for recoil system by utilizing a multi-domain software. The research process is as in the following. First, an analysis model is developed to verify damping characteristics through understanding of design intention. Second, environment which is identical to a field test is set up on analysis tool after putting explosive force that is measured through the test into the analysis model. Finally, the analysis model for recoil system using the multi-domain software is verified if it has effectiveness with a comparison between internal pressure of the recoil system along with displacement of gun barrel and the field test result.

Functional Verification of Engineering Model of Non-explosive Shockless Holding and Release Mechanism Using Heating Wire Cutting Method (열선 절단 방식을 적용한 비폭발식 무충격 구속분리장치 EM의 기능검증)

  • Oh, Hyun-Ung;Jeon, Su-Hyeon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.401-406
    • /
    • 2013
  • Non-explosive shockless holding and release mechanism for a nano class small satellite application has been proposed and investigated. The great advantages of the mechanism are a much lower shock level and larger constraint force than the conventional mechanism using pyro and the heating wire cutting mechanism which has been generally applied to the cube satellite program. To investigate the effectiveness of the mechanism design, EM mechanism was developed and tested to verify the basic function of the mechanism. The test results indicate that the proposed mechanism is well functioning as the mechanism design intends.

The Development of Pyrotechnically Releasable Mechanical Linking Device Using Pressure Cartridge (압력카트리지를 이용한 파이로 분리장치 개발)

  • Kim, Dong-Jin;Lee, Yeung-Jo;Ko, Young-Kyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.340-343
    • /
    • 2011
  • Explosive bolts are reliable and efficient mechanical fastening devices having the special feature of a built-in release. The disadvantage of explosive bolt lies in that it is based on the high explosive effect of a pyrotechnic charge. The aim of the present work is to propose a pyrotechnically releasable mechanical linking device for two mechanical elements that does not suffer from such drawbacks. The pyro-lock using the pressure cartridge has the release characteristic without fragmentation and minimum pyro-shock. The present work is focused on the design, the interpretation of structure, the separation mechanism, separation force, and the results of various tests.

  • PDF

The Study on the Fragment Ejection Velocity and Spray Angle from a High Explosive Cylindrical Warhead (실린더형 HE 탄두 폭발 시 파편의 속도 및 발사각 추정방법 연구)

  • Hwang, Changsu;Park, Younghyun;Park, Seikwon;Jung, Daehan;Lee, Moonsik;Kang, Sunbu;Kim, Deuksu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.904-912
    • /
    • 2019
  • We have studied the numerical analysis about the fragment ejection velocity and spray angle when the High Explosive warhead detonated at proximity distance at an aircraft. To study the physical quantities about the warhead components is very important to assessment the vulnerability of aircraft. Generally, the physical quantities about the components of a warhead such as the mass, length, diameter and charge to mass ratio are unknown. Therefore, it is required to estimate the physical quantities by using physical continuities of similar threats. The empirical formulas to understand the dependence among charge to mass ratio, length and diameter ratio were driven by using the physical parameters of similar threatening such as terrier, sparrow. As a result, we confirmed that the dead mass ratio was closed to 20% of warhead mass since the metal case of the proximity threat acts as a simple carrier. This implies that the effective length and diameter of High Explosive Compound is smaller than the length and diameter of warhead, and become a key to understand the large ejection gradient velocity and small spray angle of fragments within 6 degree.

Development of Inertial Locking Anti-G Buckle of A Seatbelt System With Pre-tensioner (프리텐셔너가 장착된 시트벨트 시스템의 관성잠김 안전버클 개발)

  • Tak, Tae-Oh;Kuk, Min-Gu;Kim, Dae-Hee;Park, Jae-Soon;Shin, Seung-Eon;Choi, Seok
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.47-54
    • /
    • 2006
  • To improve passenger safety, seat belt systems with pre-tensioner that tightens seat belt webbing using explosive just before collision are widely used these days. Even though seatbelt must not unlatched without passengers' operation. explosive power of pre-tensioner can cause unlocking of a buckle. To prevent the unlocking, an anti-g mass that blocks displacement of the release button has been attached to the buckle. In this study, the dynamics and statics of locking mechanism associated with operation of anti-g buckle has been theoretically investigated, and important design variables that affect the operation of anti-g buckle have been identified. Through the total seat belt system's dynamic simulation using force and displacement inputs obtained from seat belt sled test, design of the proposed anti-g buckle has been validated.

  • PDF

Method for evaluating the safety performance and protection ability of the mobile steel protective wall during the high-explosive ammunition test (고폭탄 탄약시험 간 이동형 강재 방호벽의 안전성능 판단 및 유효 방호력 평가 방법)

  • Jeon, In-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.573-582
    • /
    • 2021
  • In this study, a series of processes for evaluating the effective protection against barriers that should be equipped in institutions that perform reliability tests on high-risk ammunition, such as high-explosive ammunition, were introduced. The impact that high-explosive bombs can have on personnel includes damage to the eardrum and lungs caused by explosion overpressure and penetrating wounds that can be received by fragments generated simultaneously with the explosion. Therefore, a high-explosive with COMP B explosives as its contents were set up, and an explosion protection theory investigation to calculate the degree of damage, numerical calculations and simulations were performed to verify the protection power. A numerical calculation revealed the maximum explosion overpressure on the protective wall when the high-explosive exploded and the penetration force of the fragment against a 50 mm-thick protective wall to be 77.74 kPa and 41.34 mm, respectively. In the simulation verification using AUTODYN, the maximum explosion overpressures affecting the firewall and personnel were 56.68 kPa and 18.175 kPa, respectively, and the penetration of fragments was 35.56 mm. This figure is lower than the human damage limit, and it was judged that the protective power of the barrier would be effective.

Non-explosive Low-shock Separation Device for small satellite (소형 위성용 비폭발식 저충격 분리장치)

  • Park, Hyun-Jun;Tak, Won-Jun;Han, Bum-Ku;Kwag, Dong-Gi;Hwang, Jai-Hyuk;Kim, Byung-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.457-463
    • /
    • 2009
  • This paper describes the development of non-explosive separation(NES) device which can be equipped on a small satellite. It comprises mechanism itself and spring-type shape memory alloy(SMA) actuator. In order to design SMA actuator properly, the necessary actuation force is measured. Based on that result, SMA actuator is designed and fabricated. Finally, SMA actuator and the proposed mechanism are integrated. In order to evaluate performance of the developed NES, we carried out a response time test, preload test and shock level test. In near future, we expect to replace the imported NES device with the developed device.

A Study on the Profile Change Measurement of Steam Generator Tubes with Tube Expansion Methods

  • Kim, Young-Kyu;Song, Myung-Ho;Choi, Myung-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.543-551
    • /
    • 2011
  • Steam generator tubes for nuclear power plants contain the local shape transitions on their inner or outer surface such as dent, bulge, over-expansion, eccentricity, deflection, and so on by the application of physical force during the tube manufacturing and steam generator assembling and by the sludge (that is, corrosion products) produced during the plant operation. The structural integrity of tubes will be degraded by generating the corrosive crack at that location. The profilometry using the traditional bobbin probes which are currently applied for measuring the profile change of tubes gives us basic information such as axial locations and average magnitudes of deformations. However, the three-dimensional quantitative evaluation on circumferential locations, distributional angle, and size of deformations will have to be conducted to understand the effects of residual stresses increased by local deformations on corrosive cracking of tubes. Steam generator tubes of Korean standard nuclear power plants expanded within their tube-sheets by the explosive expansion method and suffered from corrosive cracks in the early stage of power operation. Thus, local deformations of steam generator tubes at the top of tube-sheet were measured with an advanced rotating probe and a laser profiling system for the two cases where the tubes expanded by the explosive expansion method and hydraulic expansion. Also, the trends of eccentricity, deflection, and over-expansion of tubes were evaluated. The advanced eddy current profilometry was confirmed to provide accurate information of local deformations compared with laser profilometry.

Performance Verification of Separation Nut Type Non-explosive Separation Device for Cube Satellite Application (큐브위성 적용을 위한 분리너트형 비폭발식 구속분리장치 인증모델의 성능검증)

  • Oh, Hyun-Ung;Lee, Myeong-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.827-832
    • /
    • 2013
  • Heating wire cutting type separation mechanism has been widely used for cube satellite applications due to its design constraints such as small size of $10cm{\times}10cm{\times}10cm$ and light weight of less than 1kg. In addition, usage of pyro technic device is not allowed for cube satellite application. The conventional methods have some disadvantages of relatively small mechanical constraint force and the system complexity for the multi-deployable systems. In this paper, a separation nut type non-explosive separation mechanism has been proposed and investigated. The effectiveness of the design has been verified through the qualification tests of the mechanism.