• Title/Summary/Keyword: Explosive Performance

Search Result 300, Processing Time 0.025 seconds

Study on the Performance Evaluation of the Explosive Bolt that has been Natural Aging (자연 노화된 폭발볼트의 성능 평가에 관한 연구)

  • Kim, Dongjin;Jeong, Donghee;Lee, Yeungjo;Lee, Youngwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.84-90
    • /
    • 2017
  • Explosive bolt is coupled in a variety of guided weapons and space projectiles, to perform the separation function. Thus, the role of the explosive bolt in guided weapons systems is very important, as it can cause failure of the entire system in the case of mission failure. For this reason, the design life prediction for explosive bolt is highly and frequently required recently, but its accurate prediction method has not been presented. In order to apply the existing accelerated aging process, we should know the activation energy and the acceleration factor of the explosive bolt. Since the information required for accelerated aging is not presently secured, it is difficult to predict the design life of explosive. Thus, in the present study, we have evaluated the performance of actual explosive bolts in the condition of natural aging over 10 years in order to present a minimum design life.

The Study on the Explosive Spalling Properties of High Performance Concrete According to the Heating Time (가열시간에 따른 고성능콘크리트의 폭렬특성에 관한 연구)

  • Na, Chul-Sung;Roh, Kyung-Min;Cho, Bong-Suk;Gwon, Yeong-Jin;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.461-464
    • /
    • 2006
  • Recently, as structures become bigger and higher, it is needed that high strength, high flow and high durability concrete. Demanding of High performance concrete that equality is maintained without material separation while flow, strength is increased by using low W/C rate and admixture, carbonation does not occur because of dense filling and has high durability is increasing rapidly. Because this high performance concrete is superior to general concrete in workability and durability, it is widely used in many construction and engineering works fields. However, it is reported that when it was exposed in fire, violent explosive spalling would be happened. Therefore, the purpose of this study evaluates explosive spalling properties of fire damaged high performance concrete according to the heating time.

  • PDF

Relation Between Water Content Ratio and Fire Performance of Class 1 Structural Light Weight Aggregate Concrete (1종 경량골재콘크리트의 함수율과 내화특성)

  • Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.321-327
    • /
    • 2014
  • Structural light weight aggregate concrete are made with both coarse and fine light weight aggregates, but it is common with the high strength concrete to replace all or part with normal weight sand be called class 1 structural light weight aggregate concrete. Fire resistance of structural light weight aggregate concrete are determined by properties of high water content ratio and explosive spalling. Especially, structural light weight aggregate concrete is occurred serious fire performance deterioration by explosive spalling stem from thermal stress and water vapor pressure. This study is concerned with experimentally investigating fire resistance of class 1 structural light weight concrete. From the test result, class 1 structural light weight concrete is happened explosive spalling. The decrease of cross section caused by explosive spalling made sharp increasing gradient of inner temperature.

Performance of sandwich structure strengthened by pyramid cover under blast effect

  • Mazek, Sherif A.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.471-486
    • /
    • 2014
  • The number of explosive attacks on civilian structures has recently increased. Protection of structure subjected to blast load remains quite sophisticated to predict. The use of the pyramid cover system (PCS) to strengthen sandwich structures against a blast terror has great interests from engineering experts in structural retrofitting. The sandwich steel structure performance under the impact of blast wave effect is highlighted. A 3-D numerical model is proposed to study the PCS layer to strengthen sandwich steel structures using finite element analysis (FEA). Hexagonal core sandwich (XCS) steel panels are used to study structural retrofitting using the PCS layer. Field blast test is conducted. The study presents a comparison between the results obtained by both the field blast test and the FEA to validate the accuracy of the 3-D finite element model. The effects are expressed in terms of displacement-time history of the sandwich steel panels and pressure-time history effect on the sandwich steel panels as the explosive wave propagates. The results obtained by the field blast test have a good agreement with those obtained by the numerical model. The PCS layer improves the sandwich steel panel performance under impact of detonating different TNT explosive charges.

Theoretical calculation of the parameters influencing on the performance of high explosives (고성능폭약의 성능에 영향을 미치는 요소들의 이론적 계산)

  • 권상기
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.218-226
    • /
    • 2000
  • In order to determine the performance of an explosive, various parameters such as the detonation pressure, detonation velocity, heat generation, and fume generation of the explosive should be accurately described. In this study, the pressure increase, volume expansion, temperature increase, and detonation velocity of high explosives were tried to determined theoretically based on thermochemical theories. From this study, a Fortran program for calculating the explosion parameters, which can influence on the performance of explosives, was developed and applied to the high-explosives, ANFO and NG.

  • PDF

Clearance Depth Control of Non-explosive Demining System (비폭파식 지뢰제거 시스템의 작업 깊이 제어)

  • Jeong, Hae-Kwan;Choi, Hyun-Do;Kim, Sang-Do;Kwak, Yoon-Keun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.749-754
    • /
    • 2004
  • Up to now, non-explosive demining system adaptable to a mobile robot has been developed. This system has much smaller platform and consists of non-explosive mechanism. Brief experiment indoors showed thai developed demining system can remove landmines well. But, out of doors, some problems are detected i.e. Inclination of overall system causes a suspension of rake rotation. In this research, a study on performance improvement of developed non-explosive demining system is mainly discussed. To compensate the inclination of the system, mechanical sensor composed of shaft and spring is used. This sensor gives a signal to a leadscrew motor and controls a rotating direction. From an experiment, it is confirmed that the mechanical sensor as stated is a good solution of the inclination of the system.

  • PDF

Clearance Depth Control for the Non-explosive Demining System of a Tracked Mobile Robot (비폭파식 지뢰제거 무한궤도형 주행 로봇의 작업 깊이 제어)

  • Jeong Hae Kwan;Choi Hyun Do;Kim Sang Do;Kwak Yoon Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.155-161
    • /
    • 2005
  • Up to now, a lot of unmanned demining systems have been developed. However, some inferiority surely exist by reason of their large platform and explosive mechanism. To settle this inferiority, non-explosive demining system adaptable to a mobile robot already has been developed. Brief experiment indoors showed that developed demining system can remove landmines well. But, out of doors, several problems are detected. In this research, a study on the performance improvement of developed non-explosive demining system is mainly discussed. To overcome downhill effect, mechanical sensor composed of shaft and spring is used. It is confirmed that clearance depth control using the mechanical sensor is a good solution for the inclination of the system.

Explosive Spalling of Structural Lightweight Aggregate Concrete (구조용 경량골재 콘크리트의 폭렬특성)

  • Song, Hun;Lee, Jong-Chan;Lee, Sea-Hyun;Kim, Woo-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.477-480
    • /
    • 2006
  • Normally, with all ensuring the fire resistance structure as a method of setting the required cover thickness to fire, the RC is significantly affected from the standpoint of its structural stability that the compressive strength and elastic modulus is reduced by fire. Especially, high strength concrete and lightweight aggregate concrete is occurred serious fire performance deterioration by explosive spalling. Thus, this study is concerned with explosive spalling of lightweight concrete using structural lightweight aggregate. From the experimental test result, lightweight aggregate concrete is happened explosive spalling. The decrease of cross section caused by explosive spalling made sharp increasing gradient of inner temperature.

  • PDF

Recent Research Trends in Explosive Detection through Electrochemical Methods (전기화학적 방법을 통한 폭발물 검출 연구동향)

  • Lee, Wonjoo;Lee, Kiyoung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.399-407
    • /
    • 2019
  • The development of explosive detection technology in a security environment and fear of terrorism at homeland and abroad has been one of the most important issues. Moreover, research works on the explosive detection are highly required to achieve domestic production technology due to the implementation of aviation security performance certification system. Traditionally, explosives are detected by using classical chemical analyses. However, in the view of high sensitivity, rapid analysis, miniaturization and portability electrochemical methods are considered as promising. Most of electrochemical explosive detection technologies are developed in USA, China, Israel, etc. This review highlights the principle and research trend of electrochemical explosive detection technologies carried out overseas in addition to the research direction for future exploration.

Methodology Study of Design Related to Accidental Explosion of Simple Explosive Storage Facility (화약류 간이저장소의 우발적 폭발을 고려한 안전설계 방법 연구)

  • Jung-Gyu, Kim;Seung-Won, Jung;Jun-Ha, Kim;Byung-Hee, Choi
    • Explosives and Blasting
    • /
    • v.40 no.4
    • /
    • pp.1-14
    • /
    • 2022
  • To review the appropriateness of current regulations on the simple explosive storage facility, the effects of internal explosion on the structural stability of the standard storage facility were analyzed by means of both FEM analyses and field experiments. As a result, it was found that the explosion-proof performance of the existing storage structure was not sufficient for 15 kg of emulsion-type explosive. Thus, an alternative method of splitting explosives was tested by conducting sympathetic detonation experiments. This method worked properly as expected, and the proper amount of splitted explosive was determined according to the test results. In addition, a storage structure with open ceiling was found to be very effective because explosion pressure was released so rapidly that the damage of the facility could be reduced significantly. Hence, such a structural pattern was proposed as a new design scheme for simple explosive storage facility.