• Title/Summary/Keyword: Explosive Hazard Area

Search Result 9, Processing Time 0.02 seconds

A Study on Explosive Hazardous Areas in Hydrogen Handling Facility (수소 취급설비의 폭발위험장소에 관한 연구)

  • PYO, DON-YOUNG;LIM, OCK-TAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.1
    • /
    • pp.29-34
    • /
    • 2019
  • Safety of hydrogen handling facilities is needed as supply of hydrogen cars has been expanded recently. In this study, the adequacy of safety regulations of hydrogen handling facilities and the risk of damage with hydrogen leakage were studied. The range of explosion hazard location of the hydrogen filling plant was investigated using the computational fluid dynamics (CFD) method, Explosive hazardous area is influenced by leakage type, hole size and sectional area. When the conditions of KS standard are applied, range explosive hazardous area is expanded 7.05 m, maximum. It is about 7 times larger than exceptional standard of hydrogen station. Meanwhile, distance from leakage point to 25% LEL of hydrogen is investigated 1.6 m. Considering the shape of charging hose, regulation of hydrogen station is appropriate.

Area Classification of Hazardous Gas Facility According to KGS GC101 Code (KGS GC101을 통한 가스시설 폭발위험장소의 설정)

  • Kim, Jeong Hwan;Lee, Min-Kyung;Kil, Seong-Hee;Kim, Young-Gyu;Ko, Young Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.46-64
    • /
    • 2019
  • Technical practice code, KGS GC101 2018, for explosion hazard area selection and distance calculation of gas facility was enacted and implemented from July 12, 2018. This code includes whole contents of IEC60079-10-1 2015 (Explosive atmospheres Part 10-1: Classification of areas - Explosive gas atmospheres), and clarifies the interpretation of ambiguous standards or adds guidelines for standards. KGS GC101 is a method for classifying explosion hazard place types: (1) Determination of leak grade (2) Determination of leakage hole size (3) Determination of leakage flow (4) Determination of dilution class (5) Determination of ventilation effectiveness, finally (6) Determination of danger place (7) Explosion The range of dangerous places can be estimated. In order to easily calculate this process, the program (KGS-HAC v1.14, C-2018-020632) composed by Visual Basic for Application (Excel) language was produced by Korea Gas Safety Corporation. We will discuss how to use codes and programs to select and set up explosion hazard zones for field users.

Developing slope hazard map system with mobile PPT (모바일 PPT를 이용한 사면 붕괴 위험도 산출 시스템 구축)

  • Yang, Seung-Tae;Seong, Eun-Yeong;Kang, Young-Shin;Kang, In-Joon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.367-370
    • /
    • 2007
  • Recently, With explosive national land developments construction fields ate increasing, and slope failures are disastrous when they occur in mountainous area adjoining highways. but public institutions and supervisors, to manage slope need GIS for managing it more quickly and correctly. For manage slope, it is nesessary to use new IT, especially wireless internet. The current domestic population using cell phones exceeded 30 million and the domestic wireless Internet environment has matured, but implementation of mobile technology for government services isnot matured enough. In this paper the author proposed a new system of mobile PPT monitoring for managing slope inspection for Ubiquitous Environment. This new system manages data in real time and reduces human power when applied to current working environments. This research was supported by a grant(NEMA-06-NH-05) from the Natural Hazard Mitigation Research Group, National Emergency Management Agency.

  • PDF

Technical/Systemic Approach to Safety Assesment of Thermoprocessing Equipment Consuming LNG for Classification of Hazardous Area (LNG를 사용하는 설비에서의 폭발위험장소 적용 및 구분에 대한 제도/기술적 접근방안)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.33-40
    • /
    • 2011
  • In the hazardous areas where explosive liquids, vapors and gases exist, electrical apparatus/equipment should have explosion-proof construction. The consuming of liquefied natural gas(LNG) has markedly increased in the industrial field, especially in aspect of some thermoprocessing equipment, boiler, dryer, furnace, annealer, kiln, regenerative thermal oxidizer(RTO) and so on. Because it has many merits, clean fuel, safety, no transportation/storage facility and so on. It is strongly recommend that the classification of hazards has to be decided to prevent and protect explosion which may occur in thermoprocessing equipment. In this paper, the operated thermoprocessing equipments in industrial area investigated and explosion risk assessment about LNG leakage from its facilities was performed through numerical calculation and computer simulation. Finally, we suggest the systemic/technical approach for safety assessments of thermoprocessing equipments consumed LNG fuel which are specially subjected to classification of hazardous area.

A Study on Workers' Risk-Aware Smart Bands System in Explosive Areas (폭발위험지역 근로자 위험 인지형 스마트밴드시스템에 대한 연구)

  • Lee, Byong-Kwon
    • Journal of Internet of Things and Convergence
    • /
    • v.5 no.2
    • /
    • pp.73-79
    • /
    • 2019
  • Research is underway on services and systems that provide real-time alerts for suffocating gases and potentially explosive materials, but currently smart bend type services are lacking. This study supports real-time identification of explosion hazards due to static electricity in the workplace and immediate elimination of accident occurrence factors, real-time monitoring of worker status and workplace hazards (oxygen, hazardous chemical concentration), and immediate warning and data in case of danger. We propose a method of establishing an accident prevention system through analysis. In this way, various accidents that may occur in industrial sites are monitored using IoT-based intelligent sensor nodes, wireless network technology, data processing middleware, and integrated control system, and real-time risk information at the industrial sites is prevented and accidents are prevented. By supporting a safe working environment, the company can significantly reduce costs compared to post-procurement costs.

A Study on Determination of Range of Hazardous Area Caused by the Secondary Grade of Release of Vapor Substances Considering Material Characteristic and Operating Condition (물질특성 및 운전조건을 고려한 증기상 물질의 2차 누출에 따른 폭발위험장소 범위 선정에 관한 연구)

  • Seo, Minsu;Kim, Kisug;Hwang, Yongwoo;Chon, Youngwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.13-26
    • /
    • 2018
  • Currently, local regulations, such as KS Code, do not clearly specify how to calculate the range of hazardous area, so the dispersion modeling program should be used to select dispersion. The purpose of this study is to present a methodology of determining the range of hazardous area which is simpler and more reasonable than modelling by using representative materials and process conditions. Based on domestic and overseas regulations that are currently in effect, variables affecting distance to LFL(Lower Flammable Limit) were selected. A total of 16 flammable substances were modelled for substance variables, process conditions variables, and weather conditions variables, and the statistical analysis selected the variables that affect them. Using the selected variables, a three-step classification method was prepared to select the range of locations subject to explosion hazard.

Proposal for Ignition Source and Flammable Material Safety Management through 3D Modeling of Hazardous Area: Focus on Indoor Mixing Processes (폭발위험장소 구분도의 3D Modeling을 통한 점화원 및 가연물 안전관리 방안 제안: 실내 혼합공정을 중심으로)

  • Hak-Jae Kim;Duk-Han Kim;Young-Woo Chon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.47-59
    • /
    • 2024
  • Purpose: This study aims to propose measures for the prevention of fire and explosion accidents within manufacturing facilities by improving the existing classification criteria for hazardous locations based on the leakage patterns of flammable liquids. The objective is to suggest ways to safely manage ignition sources and combustible materials. Method: The hazardous locations were calculated using "KS C IEC 60079-10-1," and the calculated explosion hazard distances were visualized in 3D. Additionally, the formula for the atmospheric dispersion of flammable vapors, as outlined in "P-91-2023," was utilized to calculate the dispersion rates within the hazardous locations represented in 3D. Result: Visualization of hazardous locations in 3D enabled the identification of blind spots in the floor plan, facilitating immediate recognition of ignition sources within these areas. Furthermore, when calculating the time taken for the Lower Explosive Limit (LEL) to reach within the volumetric space of the hazardous locations represented in 3D, it was found that the risk level did not correspond identically with the explosion hazard distances. Conclusion: Considering the atmospheric dispersion of flammable liquids, it was concluded that safety management should be conducted. Therefore, a method for calculating the concentration values requiring detection and alert based on realistically achievable ventilation rates within the facility is proposed.

Hazards of decomposition and explosion for Tert-butylperoxymaleate (터셔리부틸퍼옥시말레이트의 분해 및 폭발 위험성)

  • Lee, Jung-Suk;Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.1
    • /
    • pp.40-47
    • /
    • 2021
  • In this study, hazards of decomposition and explosion for tert-butylperoxymaleate(TBPM), an organic peroxide, were evaluated by using various equipment to determine the cause of a fire explosion accident. As a result of DSC analysis, the instantaneous power density of TBPM was 26,401 kW/ml, and the NFPA reactive index(Nr) was classified as 4. And the positive value of EP(explosive propagation) and SS(shock sensitivity) showed that the TBPM had a potential hazard of explosion. From the experimental results, the shock sensitivity and friction sensitivity was rated as class 4 and 5, respectively. In the pressure vessel test, TBPM was ranked USA-PVT No.4 and evaluated as a self-reactive substance. In the combustion rate test, TBPM had the combustion rate of 167 mm/sec and was evaluated as the flammable solid classification 2 in GHS.

Development of Base Concrete Block for Quiet Pavement System (저소음 포장용 기층 콘크리트 블록 개발)

  • Lee, Kwan-Ho;Park, Woo-Jin;Kim, Kwang-Yeom
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • The rapid economic development induced the massive road constructions, becoming bigger and high-speed of the vehicles. However, it brings lots of social problems, such as air pollutions, traffic noise and vibration. Special concrete block for the base course of asphalt pavement is needed to decrease traffic noise such as tire's explosive and vehicles sound, applying Helmholtz Resonators theory to asphalt pavement. If it is applied to the area where it happens considerable noise such as a junction, the street of a housing complex and a residential street, it is one of considerable method to solve the social requirements of noise problem. This research examines couple of laboratory tests for the sound absorption effect of the concrete block and the base concrete block. There are specimens which is fixed hall-size, space, depth as the condition of this research, and these are analysed of noise decrease effect using different condition of the first noise of each vehicle. As a result of analysis data according to vehicle noise volume, measurement distance, a form and size of the hall using the base concrete block, the use of special concrete base showed a good alternative solution for decreasing traffic noise level, from 4 dB to 9 dB.