• Title/Summary/Keyword: Explosive

Search Result 1,596, Processing Time 0.038 seconds

Study on the Performance Evaluation of the Explosive Bolt that has been Natural Aging (자연 노화된 폭발볼트의 성능 평가에 관한 연구)

  • Kim, Dongjin;Jeong, Donghee;Lee, Yeungjo;Lee, Youngwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.84-90
    • /
    • 2017
  • Explosive bolt is coupled in a variety of guided weapons and space projectiles, to perform the separation function. Thus, the role of the explosive bolt in guided weapons systems is very important, as it can cause failure of the entire system in the case of mission failure. For this reason, the design life prediction for explosive bolt is highly and frequently required recently, but its accurate prediction method has not been presented. In order to apply the existing accelerated aging process, we should know the activation energy and the acceleration factor of the explosive bolt. Since the information required for accelerated aging is not presently secured, it is difficult to predict the design life of explosive. Thus, in the present study, we have evaluated the performance of actual explosive bolts in the condition of natural aging over 10 years in order to present a minimum design life.

Study of Separation Mechanism According to the Constraint Condition of Explosive Bolts (폭발볼트의 구속환경에 따른 분리메커니즘 연구)

  • Jeong, Donghee;Lee, Youngwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.67-74
    • /
    • 2016
  • Explosive bolt is one of separation device that uses high explosive charge, and is separated by pressure formed by an explosion and the resulting shock waves. Explosive bolt having such a mechanism would have to be designed to minimize shock and debris formation generated during separation. In this study, separation tests were carried out with distance as variable for restraining the explosive bolt (Air Gap). Bolt release and its separating shape with variation of air gap is observed, and we used accelerometer to measure the shock wave transmitted through a bound object. In addition, separation behavior of explosive bolt is analyzed using ANSYS AUOTODYN program. By comparing the results of previously performed experiments and analysis, we could confirm the effects of air gap to the release behavior of explosive bolt, and decide optimum constraining environment for specific separation bolts.

A Study on the X-ray Image Reading of Radiological Dispersal Device (방사능 폭발물의 X-ray 영상판독에 관한 연구)

  • Geun-Woo Jeong;Kyong-Jin Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.437-443
    • /
    • 2024
  • The purpose of radiological Dispersal Device(RDD) is to kill people by explosives and to cause radiation exposure by dispersing radioactive materials. And It is a form of explosive that combines radioactive materials such as Co-60 and Ir-192 with improvised explosives. In this study, we tested and evaluated whether it was possible to read the internal structure of an explosive using X-rays in a radioactive explosive situation. The improvised explosive device was manufactured using 2 lb of model TNT explosives, one practice detonator, one 9V battery, and a timer switch in a leather briefcase measuring 41×35×10 cm3. The radioactive material used was the Co-60 source used in the low-level gamma ray irradiation device operated at the Advanced Radiation Research Institute of the Korea Atomic Energy Research Institute. The radiation dose used was gamma ray energy of 1.17 MeV and 1.33 MeV from a Co-60 source of 2208 Ci. The dose rates are divided into 0.5, 1, 2, and 4 Gy/h, and the exposure time was divided into 1, 3, 5, and 10 minutes. Co-60 source was mixed with the manufactured explosive and X-ray image reading was performed. As a result of the experiment, the X-ray image appeared black in all conditions divided by dose rate and time, and it was impossible to confirm the internal structure of the explosive. This is because γ-rays emitted from radioactive explosives have higher energy and stronger penetrating power than X-rays, so it is believed that imaging using X-rays is limited By blackening the film. The results of this study are expected to be used as basic data for research and development of X-ray imaging that can read the internal structure of explosives in radioactive explosive situations.

Clearance Depth Control of Non-explosive Demining System (비폭파식 지뢰제거 시스템의 작업 깊이 제어)

  • Jeong, Hae-Kwan;Choi, Hyun-Do;Kim, Sang-Do;Kwak, Yoon-Keun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.749-754
    • /
    • 2004
  • Up to now, non-explosive demining system adaptable to a mobile robot has been developed. This system has much smaller platform and consists of non-explosive mechanism. Brief experiment indoors showed thai developed demining system can remove landmines well. But, out of doors, some problems are detected i.e. Inclination of overall system causes a suspension of rake rotation. In this research, a study on performance improvement of developed non-explosive demining system is mainly discussed. To compensate the inclination of the system, mechanical sensor composed of shaft and spring is used. This sensor gives a signal to a leadscrew motor and controls a rotating direction. From an experiment, it is confirmed that the mechanical sensor as stated is a good solution of the inclination of the system.

  • PDF

Stability Analysis of Mine Drift for Explosive Welding (폭발압접에 대한 갱도의 안정성 분석)

  • Yang, Hyung-Sik;Jang, Myoung-Hwan;Jang, Hyong-Doo
    • Explosives and Blasting
    • /
    • v.28 no.1
    • /
    • pp.55-62
    • /
    • 2010
  • Explosive welding was planed in a closed drift of a mine for its reuse. In this study, we analyzed the stabilization of roof and pillar which were expected to be affected by overpressure experienced during the continual explosive welding. Three equations, normal equation, CONWEP and DDESB, were used for the estimation of overpressure. The investigation shows that the continual use of the explosive welding in a drift may result in considerable damage on the drift.

Clearance Depth Control for the Non-explosive Demining System of a Tracked Mobile Robot (비폭파식 지뢰제거 무한궤도형 주행 로봇의 작업 깊이 제어)

  • Jeong Hae Kwan;Choi Hyun Do;Kim Sang Do;Kwak Yoon Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.155-161
    • /
    • 2005
  • Up to now, a lot of unmanned demining systems have been developed. However, some inferiority surely exist by reason of their large platform and explosive mechanism. To settle this inferiority, non-explosive demining system adaptable to a mobile robot already has been developed. Brief experiment indoors showed that developed demining system can remove landmines well. But, out of doors, several problems are detected. In this research, a study on the performance improvement of developed non-explosive demining system is mainly discussed. To overcome downhill effect, mechanical sensor composed of shaft and spring is used. It is confirmed that clearance depth control using the mechanical sensor is a good solution for the inclination of the system.

Design and Separation Characteristics of an Explosive Bolt (모서리 분리형 폭발볼트 설계인자 및 분리특성)

  • 김동진;이응조
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.243-248
    • /
    • 2001
  • The present work is described the design factors and separation mechanism of ridge-cut explosive bolt in order to optimize the stage separation characteristics. Characteristics of test samples would differ depend on the detonating devices, the shape and size of bolt body, the amount of loading explosives, and the confinment conditions of bolt. Based on the results from these experimental factors, it appears to optimal condition of ridge-cut explosive that the amount of loading explosive seems to be near 110mg of RDX, the height of loading explosive is 3.5mm, the thickness of bolt is 3.9mm, and the degree of ridge is approximately $120^{\circ}$

  • PDF

A Study on the Change of Detonation Velocity with Explosive Variables (폭약변수에 따른 폭발속도 변화에 관한 연구)

  • 김희진;강봉용
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.65-70
    • /
    • 1996
  • Detonation velocity of domestic expolsives was measured using the Dautriche method. The variables employed in this study were the thickness of explosive and the amount of salt added in the ammonium nitrate(AN) explosive. As the results of this study, it was shown that the detonation velocity increases with an increase of explosive thickness but decreases with an increase of salt content. It was further demonstrated that the detonation velocity decreases rather rapidly when the salt content increases over 20 percent. In addition, the accuracy of Dautriche method was evaluated as a preliminary study and its result showed that this method is quite reliable with an experimental error of less than 10 pct.

  • PDF

Explosive Spalling of Structural Lightweight Aggregate Concrete (구조용 경량골재 콘크리트의 폭렬특성)

  • Song, Hun;Lee, Jong-Chan;Lee, Sea-Hyun;Kim, Woo-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.477-480
    • /
    • 2006
  • Normally, with all ensuring the fire resistance structure as a method of setting the required cover thickness to fire, the RC is significantly affected from the standpoint of its structural stability that the compressive strength and elastic modulus is reduced by fire. Especially, high strength concrete and lightweight aggregate concrete is occurred serious fire performance deterioration by explosive spalling. Thus, this study is concerned with explosive spalling of lightweight concrete using structural lightweight aggregate. From the experimental test result, lightweight aggregate concrete is happened explosive spalling. The decrease of cross section caused by explosive spalling made sharp increasing gradient of inner temperature.

  • PDF

An Experimental study on Explosive spalling of Concrete According to Kinds of Fine Aggregate and Admixture (잔골재 및 혼화재 종류에 따른 콘크리트의 폭열 성상에 관한 실험적 연구)

  • 장재봉;김갑수;김재환;김용로;권영진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.667-670
    • /
    • 2003
  • The purpose of this study is to present data for the reusing, reinforcement and estimation of safety of the RC structure damaged by fire, and for the prevention of explosive spalling by checking the character of explosive spalling according to kinds of fine aggregate, admixture and water-cement ratios. The materials used fine aggregates were sea sand, crushed sand and recycled sand, and the admixtures were fly ash and blast-furnace slag. Also the water-cement ratios was 55% and 30.5%. After those were heated respectively for 30 and 60 minutes in accordance with Standard Time-Temperature Curve. And then conditions of explosive spalling were divided into five grades, and characters of explosive spalling were investigated.

  • PDF