• Title/Summary/Keyword: Explosion risk analysis

Search Result 154, Processing Time 0.027 seconds

A Study on the Evaluation Model of Disaster Risks for Earthquake : Centering on the Cases of Cheongju City (지진에 대한 재해위험도 평가 모형에 관한 연구 - 청주시 사례 중심으로 -)

  • Jeong, Eui-Dam;Shin, Chang-Ho;Hwang, Hee-Yun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.67-73
    • /
    • 2010
  • Relatively high density of population and buildings exists in urban area mainly because of broad job opportunities and conveniences available. In other words, if happened, there might be high possibility of disaster which can not be easily recovered. The purpose of this study is to show evaluation approach of the risk degree resulted from the disaster, which considers the attributes of urban area. Cheongju-city in Chungcheongbuk-do is selected as sample district to be estimated. The degree of overall risk including fire risk, building collapse risk, evacuation risk and gas explosion risk etc. is analyzed in the designated area. The analysis suggests the highest risk degree in Bukmun-ro district which also shows CBD decline phenomenon. Therefore, it can be not only predicted that this area as old downtown has not been provided with disaster prevention operation and urban renewal project, but also judged that administrative assistances for the disaster are required possibly soon.

Experimental and Numerical Study on the Mitigation of High Explosive Blast using Shear Thickening based Shock-Absorbing Materials (전단농화유체기반의 충격완화물질을 이용한 고폭속 폭약의 폭발파 저감에 관한 실험 및 수치해석적 연구)

  • Younghun Ko
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.1-12
    • /
    • 2023
  • A basic assessment of techniques to mitigate the risk of blast shock waves from proximity explosions was conducted. Common existing techniques include using mitigant materials to form barriers around the explosive or in the direction of propagation of the shock wave. Various explosive energy dissipation mechanisms have been proposed, and research on blast shock wave mitigation utilizing impedance differences has drawn considerable interest. In this study, shear thickening fluid (STF) was applied as a blast mitigation material to evaluate the effectiveness of STF mitigation material on explosion shock wave mitigation through explosion experiments and numerical analysis. As a result, the effectiveness of the STF mitigant material in reducing the explosion shock pressure was verified.

Analysis of the Actual Conditions of the Asphalt Regulations by Fire Service Organizations and Explosion Cases (아스팔트에 대한 소방기관의 규제 실태와 폭발사례의 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.97-105
    • /
    • 2017
  • Because asphalt is a solid at normal temperature and is not a hazardous material as stipulated in the Safety Management Act on Hazardous Materials, it is often recognized as having no risk of fire or explosion. On the other hand, it is as dangerous as flammable liquid because it is heated to $170-180^{\circ}C$ and stored in a storage tank. This study analyzed the risk of fire and explosion during the storage and handling of asphalt and the actual conditions of asphalt regulations by fire service organizations. Moreover, this study analyzed the domestic case of explosions in the production process of asphalt concrete (ASCON) and domestic and foreign cases of asphalt storage tank explosions. The analysis suggested that unlike Japan, Korea has no asphalt regulations in fire service organizations. Explosions can occur when ignition is delayed after fuel is sprayed on the dryer drum burner of the aggregates during the production of ASCON. A physical explosion can occur in the storage tank when environmental purification facilities suddenly work strongly to remove air pollutants or bad smells during the heating of asphalt in an asphalt storage tank. In addition, explosions can occur when fires such as welding is performed in the asphalt storage tank.

Hydrogen explosion effects at a containment building following a severe accident (중대사고시 수소폭발이 격납건물에 미치는 영향)

  • Ryu, Myeong-Rok;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.165-173
    • /
    • 2016
  • On March 11, 2011, a massive earthquake measuring 9.0 on the Richter scale and subsequent 10-.14 m waves struck the Fukushima Daiichi (FD) Nuclear Power Plant. The main and backup electric power was damaged preventing the cooling system from functioning. Fuel rods overheated and led to hydrogen explosions. If heat in the fuel rods is not dissipated, the nuclear fuel coating material (e.g., Zircaloy) reacts with water vapor to generate hydrogen at high temperatures. This hydrogen is released into the containment area. If the released hydrogen burns, the stability of the containment area is significantly impacted. In this study, researchers performed an explosion analysis in a high-risk explosion area, analyzing the hydrogen distribution in a containment building [1] and the effects of a hydrogen explosion on containment safety. Results indicated that a hydrogen explosion was possible throughout the containment building except the middle area. If an explosion occurs at the top of the containment building with more than 40% of the hydrogen collected or in the bottom right or left side of the of containment building, safety of the containment building could be threatened.

Process Hazard Review and Consequence Effect Analysis for the Release of Chlorine Gas from Its Storage Tank (염소저장탱크에서의 가스 누출시 공정위험검토 및 결과영향분석)

  • Ko, Jae-Sun;Kim, Hyo
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.61-73
    • /
    • 2003
  • Most of the accidents occurred from the chemical plants are related to the catastrophic gas release events when the large amount of toxic materials is leaked from its storage tank or transmitting pipe lines. In this case, the greatest concerns are how the spreading behaviors of leakages are depended on the ambient conditions such as air stability and other environmental factors. Hence, we have focused on the risk assessments and consequential analysis for chlorine as an illustrative example. As appeared in the result, Fire & Explosion Index depicted it a bit dangerous with presenting the comprehensive degrees of hazard 90.7. And as a result of Phast6.0/ALOHA, the trends of each scenario appeared considerably identical although there are some differences in the resulting effects according to the input data for the Gas Model. The consequence analysis is performed numerically based on the dense gas mode. In the future, using more correct input data, material properties, and topographical configuration, the method of this research will be useful for the guideline of the risk assessment when the release of toxicants breaks out.

An integrated method of flammable cloud size prediction for offshore platforms

  • Zhang, Bin;Zhang, Jinnan;Yu, Jiahang;Wang, Boqiao;Li, Zhuoran;Xia, Yuanchen;Chen, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.321-339
    • /
    • 2021
  • Response Surface Method (RSM) has been widely used for flammable cloud size prediction as it can reduce computational intensity for further Explosion Risk Analysis (ERA) especially during the early design phase of offshore platforms. However, RSM encounters the overfitting problem under very limited simulations. In order to overcome the disadvantage of RSM, Bayesian Regularization Artificial Neural (BRANN)-based model has been recently developed and its robustness and efficiency have been widely verified. However, for ERA during the early design phase, there seems to be room to further reduce the computational intensity while ensuring the model's acceptable accuracy. This study aims to develop an integrated method, namely the combination of Center Composite Design (CCD) method with Bayesian Regularization Artificial Neural Network (BRANN), for flammable cloud size prediction. A case study with constant and transient leakages is conducted to illustrate the feasibility and advantage of this hybrid method. Additionally, the performance of CCD-BRANN is compared with that of RSM. It is concluded that the newly developed hybrid method is more robust and computational efficient for ERAs during early design phase.

Analysis of Research Trends in the Hydrogen Energy Field Using Co-Occurrence Keyword Analysis (동시출현 핵심단어 분석을 활용한 수소 에너지 관련 연구동향 분석)

  • Kim, Minju;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.1-18
    • /
    • 2022
  • Due to the advent of the hydrogen economy era, various studies are being conducted to transport and store hydrogen, and the risk of hydrogen explosion is emerging. In order to figure out the new technology related to hydrogen energy, it is necessary to figure out the overall research trends related to various hydrogen energy at home and abroad. In this study, a bibliometric analysis using VOSViewer for the papers published in the international journal was conducted. From the analysis in different time period using the keywords including hydrogen explosion, hydrogen pipeline, and hydrogen storage, it was found that there were frequent paper publications using numerical analysis simulation. It is also found that more and more researches on safety and hydrogen explosion in hydrogen storage and hydrogen pipeline transportation have been conducted in 2011-2022 compared to those in 2000-2010.

Probabilistic Risk Assessment for Construction Projects (건설공사의 확률적 위험도분석평가)

  • 조효남;임종권;김광섭
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.24-31
    • /
    • 1997
  • Recently, in Korea, demand for establishment of systematic risk assessment techniques for construction projects has increased, especially after the large construction failures occurred during construction such as New Haengju Bridge construction projects, subway construction projects, gas explosion accidents etc. Most of existing risk analysis modeling techniques such as Event Tree Analysis and Fault Tree Analysis may not be available for realistic risk assessment of construction projects because it is very complex and difficult to estimate occurrence frequency and failure probability precisely due to a lack of data related to the various risks inherent in construction projects like natural disasters, financial and economic risks, political risks, environmental risks as well as design and construction-related risks. Therefor the main objective of this paper is to suggest systematic probabilistic risk assessment model and demonstrate an approach for probabilistic risk assessment using advanced Event Tree Analysis introducing Fuzzy set theory concepts. It may be stated that the Fuzzy Event Tree AnaIysis may be very usefu1 for the systematic and rational risk assessment for real constructions problems because the approach is able to effectively deal with all the related construction risks in terms of the linguistic variables that incorporate systematically expert's experiences and subjective judgement.

  • PDF

The Development of Risk Assessment Program PML-Chem (위험성 평가 프로그램 PML-Chem 개발)

  • 김윤화;김형석;신동일;김인원;고재욱
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.97-102
    • /
    • 1999
  • This study is to develope the quantitative risk assessment program for consequence analysis of fire and explosion (PML-Chem), which is applicable to the chemical plants. The advantages of PML-Chem is easy to use and acquire results. Especially, PML-Chem was embedded real weather condition database for major chemical plants in ${\bigcirc}{\bigcirc}$ complex in country. Also, reliability of PML-Chem was verified through comparing PML-Chem with PHAST-Professional which is already commercial.

  • PDF