• Title/Summary/Keyword: Explosion modelling

Search Result 20, Processing Time 0.024 seconds

A Method of Explosion Modelling Using the Concept of Momentum Trap (모멘텀 트랩 개념을 이용한 폭원모델링 기법)

  • Choi, Byung-Hee;Kang, Myoung-Soo;Ryu, Chang-Ha;Kim, Jae-Woong
    • Explosives and Blasting
    • /
    • v.33 no.4
    • /
    • pp.7-13
    • /
    • 2015
  • Recently, as the demand for development and utilization of underground space is increasing worldwide, the blast damaged zone has become a major issue in constructing underground structures. In this study, to verify the explosion modelling method for blast-damaged zone (BDZ) around underground cavern, a series of small-scale test blasts was conducted using the concept of momentum trap. According to the test results, the input parameters to the numerical model (ANSYS LS-DYNA) were corrected. It is concluded that the suggested method of miniature blasting and numerical modelling using the MT concept well simulates the velocity of the MT projectile under given conditions.

Evaluation of Blast Pressure Generated by an Explosion of Explosive Material (폭발성 물질의 폭발에 따른 폭발압력 평가)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.26-34
    • /
    • 2018
  • Explosions of vapor cloud formed due to the leakage from installations with flammable fuels have often occurred in Korea and foreign countries. In this study, TNT equivalency method and Multi-Energy method for vapor cloud explosion blast modelling are described and demonstrated in a case study. As TNT equivalency method is simple and direct, it has been widely used for modelling a vapor cloud explosion blast. But TNT equivalency method found to be difficult to select a proper correlation between the amount of combustion energy produced from the vapor cloud explosion and the equivalent amount of TNT to model its blast effects. Multi-Energy method assumes that the strength of vapor cloud explosion blast depends on the layout of the space where the vapor cloud is spreading. Strictly speaking, the explosive potential of a vapor cloud is dependent upon the density of the obstructed regions. In this study, Flixborough accident are analyzed as a case study to assess the applicability of TNT equivalency method and Multi-Energy method. TNT equivalency method and Multi-Energy method found to be applicable if coefficient of TNT equivalency and coefficient of strength of explosion blast are selected properly.

Explosion Modelling for Crack Propagation near Blast holes in Rock Plate (암석판재에서 발파공 부근 균열전파에 대한 폭원모델링)

  • Choi, Byung-Hee;Kang, Myoung-Soo;Ryu, Chang-Ha;Kim, Jae-Woong
    • Explosives and Blasting
    • /
    • v.33 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • Recently, as the demand for development and utilization of underground space is increasing worldwide, the blast damaged zone has become a major issue in constructing underground structures. In this study, numerical analyses were performed for modelling a small-scale blasting of rock plates using PFC3D and ANSYS LS-DYNA. In order to verify the analysis results, several test blasts were conducted. It is concluded from the study that the numerical modelling methods well simulate the crack propagation procedure near blast holes under given conditions.

Nonlinear numerical modelling for the effects of surface explosions on buried reinforced concrete structures

  • Nagy, N.;Mohamed, M.;Boot, J.C.
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-18
    • /
    • 2010
  • The analysis of structure response and design of buried structures subjected to dynamic destructive loads have been receiving increasing interest due to recent severe damage caused by strong earthquakes and terrorist attacks. For a comprehensive design of buried structures subjected to blast loads to be conducted, the whole system behaviour including simulation of the explosion, propagation of shock waves through the soil medium, the interaction of the soil with the buried structure and the structure response needs to be simulated in a single model. Such a model will enable more realistic simulation of the fundamental physical behaviour. This paper presents a complete model simulating the whole system using the finite element package ABAQUS/Explicit. The Arbitrary Lagrange Euler Coupling formulation is used to model the explosive charge and the soil region near the explosion to eliminate the distortion of the mesh under high deformation, while the conventional finite element method is used to model the rest of the system. The elasto-plastic Drucker-Prager Cap model is used to model the soil behaviour. The explosion process is simulated using the Jones-Wilkens-Lee equation of state. The Concrete Damage Plasticity model is used to simulate the behaviour of concrete with the reinforcement considered as an elasto-plastic material. The contact interface between soil and structure is simulated using the general Mohr-Coulomb friction concept, which allows for sliding, separation and rebound between the buried structure surface and the surrounding soil. The behaviour of the whole system is evaluated using a numerical example which shows that the proposed model is capable of producing a realistic simulation of the physical system behaviour in a smooth numerical process.

The Stabilization Model of Receive Sensitivity of Thick Film Oscillation Circuit for Air Explosion Shell (공중폭발 탄용 후막 발진회로의 수신감도 안정화 모델)

  • Lim, Young-Cheol;Kim, Kwan-Woo;Choi, Jin-Bong;Jung, Young-Gook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.17-26
    • /
    • 2010
  • This paper proposes the stabilization modelling method of receive sensitivity of thick film oscillation circuit for air explosion shell. The proposed method minimizes the errors of the thick film oscillator which uses air explosion shell for military and it is very similar to the simulation for maximizing the efficiency. Firstly, the proposed method gets the equation of new form through statistical analysis from the data which shows always fixed and stabilized output from the real model. Secondly, the simulation is designed which is possible to predict the output, after optimization that is a model to match the each electronic component output by the equation. In a conclusion, the usefulness, the accuracy and the precision are proved as compared with the output data of real model.

3D Explosion Analyses of Hydrogen Refueling Station Structure Using Portable LiDAR Scanner and AUTODYN (휴대형 라이다 스캐너와 AUTODYN를 이용한 수소 충전소 구조물의 3차원 폭발해석)

  • Baluch, Khaqan;Shin, Chanhwi;Cho, Yongdon;Cho, Sangho
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.19-32
    • /
    • 2022
  • Hydrogen is a fuel having the highest energy compared with other common fuels. This means hydrogen is a clean energy source for the future. However, using hydrogen as a fuel has implication regarding carrier and storage issues, as hydrogen is highly inflammable and unstable gas susceptible to explosion. Explosions resulting from hydrogen-air mixtures have already been encountered and well documented in research experiments. However, there are still large gaps in this research field as the use of numerical tools and field experiments are required to fully understand the safety measures necessary to prevent hydrogen explosions. The purpose of this present study is to develop and simulate 3D numerical modelling of an existing hydrogen gas station in Jeonju by using handheld LiDAR and Ansys AUTODYN, as well as the processing of point cloud scans and use of cloud dataset to develop FEM 3D meshed model for the numerical simulation to predict peak-over pressures. The results show that the Lidar scanning technique combined with the ANSYS AUTODYN can help to determine the safety distance and as well as construct, simulate and predict the peak over-pressures for hydrogen refueling station explosions.

A Study on the Safety Distance of Underground Structures in Asepct of Ground Vibration Velocity due to Explosions (지중 구조물의 지반 진동 안전거리 설정에 관한 현장적용연구)

  • Park, Sangjin;Kang, Jiwon;Park, Young Jun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.4
    • /
    • pp.87-94
    • /
    • 2016
  • The necessity to consider stability of underground structures constructed below or adjacent ammunition depots has been increased since the expansion of urban area and construction of infrastructure. However, there are a few studies on influence of accidental explosion on underground structures. In this study, the process of assessing the stability of underground structures is suggested and its applicability is verified through the case study. AUTODYN and SPACECLAIM are used to execute the structure and geotechnical modelling, and explosion effect is simulated and vibration velocities are calculated. According to the result of this case study, it is concluded that underground structure constructed 70m below ground might be rarely influenced by the simulated explosion. The process used in this study could be used to design the underground ammunition complex and analyse the stability of underground facilities being influenced by periodical vibration.

Improved nonlinear modelling approach of simply supported PC slab under free blast load using RHT model

  • Rashad, Mohamed;Yang, T.Y.
    • Computers and Concrete
    • /
    • v.23 no.2
    • /
    • pp.121-131
    • /
    • 2019
  • Due to the heterogeneity nature of the concrete, it is difficult to simulate the hyperdynamic behaviour and crack trajectory of concrete material when subjected to explosion loads. In this paper, a 3D nonlinear numerical study was conducted to simulate the hyperdynamic behaviour of concrete under various loading conditions using Riedel-Hiermaier-Thoma (RHT) model. Detailed calibration was conducted to identify the optimal parameters for the RHT model on the material level. For the component level, the calibrated RHT parameters were used to simulate the failure behaviour of plain concrete (PC) slab under free air blast load. The response was compared with an available experimental result. The results show the proposed numerical model can accurately simulate the crack trajectory and the failure mode of the PC slab under free air blast load.

Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive loading

  • Abedini, Masoud;Zhang, Chunwei
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.441-461
    • /
    • 2021
  • Reinforced concrete (RC) columns are crucial in building structures and they are of higher vulnerability to terrorist threat than any other structural elements. Thus it is of great interest and necessity to achieve a comprehensive understanding of the possible responses of RC columns when exposed to high intensive blast loads. The primary objective of this study is to derive analytical formulas to assess vulnerability of RC columns using an advanced numerical modelling approach. This investigation is necessary as the effect of blast loads would be minimal to the RC structure if the explosive charge is located at the safe standoff distance from the main columns in the building and therefore minimizes the chance of disastrous collapse of the RC columns. In the current research, finite element model is developed for RC columns using LS-DYNA program that includes a comprehensive discussion of the material models, element formulation, boundary condition and loading methods. Numerical model is validated to aid in the study of RC column testing against the explosion field test results. Residual capacity of RC column is selected as damage criteria. Intensive investigations using Arbitrary Lagrangian Eulerian (ALE) methodology are then implemented to evaluate the influence of scaled distance, column dimension, concrete and steel reinforcement properties and axial load index on the vulnerability of RC columns. The generated empirical formulae can be used by the designers to predict a damage degree of new column design when consider explosive loads. With an extensive knowledge on the vulnerability assessment of RC structures under blast explosion, advancement to the convention design of structural elements can be achieved to improve the column survivability, while reducing the lethality of explosive attack and in turn providing a safer environment for the public.

Structural Analysis of Impact·Blast Resistant Composite Panel using ACP and AUTODYN (ACP와 AUTODYN을 이용한 방호·방폭 보강 복합패널 구조해석)

  • Kim, Woonhak;Kang, Seokwon
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.4
    • /
    • pp.432-439
    • /
    • 2016
  • To make a model of a Impact/Blast resistant composite material and perform the analysis, material properties of the composite material are required. In order to obtain such a property value, it is necessary to input the result obtained by performing a lot of material tests by the calculation formula of the situation, and there is a lot of difficulty in the case of a special purpose material which is not a general material. In this study, modeling and structural analysis of composite fiber panels for protection and explosion - proofing were performed in ACP(ANSYS Composite PrePost) and AUTODYN by applying the application properties of composites provided in Ansys Workbench environment.