• Title/Summary/Keyword: Explosion accidents

Search Result 302, Processing Time 0.018 seconds

CFD-based Fire Accident Impact Analysis in Clean Room for semiconductor PR Process (반도체 PR 공정의 클린룸내 CFD 기반 화재 사고 영향 분석)

  • Chun, Kwang-Su;Yi, Jinseok;Park, Myeongnam
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.35-44
    • /
    • 2021
  • The PR (Photo Resist) process in the semiconductor process is a process that uses a mixture of flammable substances. Due to the process equipment is installed in a clean room and when flammable substances leak, there is a high risk of suffocation, fire, and explosion. It is necessary to analyze the impact of accidents that may occur during operation and to evaluate whether the safety of workers can be guaranteed. In this study, the value of radiant heat and temperature change at the monitor point set up virtual inside the clean room was confirmed through CFD simulation of 10 leak and fire scenarios using the FLACS CFD - Fire Module. A fire that occurs inside a clean room transfers high radiant heat to the inter-story structure, but its scope is quite limited, and it is unlikely that it will collapse in a single fire accident. There was no scenario in which two stairs leading to the exit were exposed to high radiant heat at the same time due to a fire accident, therefore workers were able to escape in case of a fire. In addition, it was confirmed that the level of radiant heat and temperature rise rapidly decreased as they moved downstairs. According to the API 520 standard, workers exposed to 6.31 kW/m2 of radiant heat that workers can withstand for 30 seconds were confirmed that it was possible to sufficiently escape from the inside.

Low price type inspection and monitoring system of lithium ion batteries for hybrid vessels (하이브리드 선박용 리튬 배터리의 저가형 감시시스템 구현)

  • Kwon, Hyuk-joo;Kim, Min-kwon;Lee, Sung-geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.28-33
    • /
    • 2016
  • Batteries are used for main power engine in the fields such as mobiles, electric vehicles and unmanned submarines, for starter and lamp driver in general automotive, for emergency electric source in ship. These days, lead-acid and the lithium ion batteries are increasingly used in the fields of the secondary battery, and the lead-acid battery has a low price and safety comparatively, The lithium ion battery has a high energy density, excellent output characteristics and long life, whereas it has the risk of explosion by reacting with moisture in the air. But Recently, due to the development of waterproof, fireproof, dustproof technology, lithium batteries are widely used, particularly, because their usages are getting wider enough to be used as a power source for hybrid ship and electric propulsion ship, it is necessary to manage more strictly. Hybrid ship has power supply units connected to the packets to produce more than 500kWh large power source, and therefore, A number of the communication modules and wires need to implement the wire inspection and monitor system(WIIMS) that allows monitoring server to transmit detecting voltage, current and temperature data, which is required for the management of the batteries. This paper implements a low price type wireless inspection and monitoring system(WILIMS) of the lithium ion battery for hybrid vessels using BLE wireless communication modules and power line modem( PLM), which have the advantages of low price, no electric lines compared to serial communication inspection systems(SCIS). There are state of charge(SOC), state of health(SOH) in inspection parts of batteries, and proposed system will be able to prevent safety accidents because it allows us to predict life time and make a preventive maintenance by checking them at regular intervals.