• Title/Summary/Keyword: Explosion

Search Result 2,236, Processing Time 0.027 seconds

An Introduction on Explosion Protection System (폭발 보호(진압, 배풍, 차단) 시스템에 관한 소개)

  • 김찬주
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.76-79
    • /
    • 1996
  • This paper provides an overview or an introduction covering the nature of explosions, explosion protection techniques and explosion protection systems(EPS), It is not intended to be a result for the design or research of protection including explosion suppression, venting, isolation, and an explanation to the mechanical system.

  • PDF

Design consideration for protecting fuel tank explosion (항공기 연료탱크 폭발 방지를 위한 설계 방안 연구)

  • Kim, Seung-kyem
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.1
    • /
    • pp.7-12
    • /
    • 2012
  • Fuel tank design requires special care because tank explosion can cause catastrophic event with high possibility as shown in accident of TWA 800. In this study, cause of fuel tank explosion was reviewed and several design considerations to minimize explosion possibility were introduced.

A Study on the Safety Standard for Explosion Protection of Electrical Equipment (전기설비의 방폭안전기준제정을 위한 조사 연구)

  • 김상렬;박찬성;김찬오;이재인
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.1
    • /
    • pp.57-64
    • /
    • 1992
  • This study is conducted for both examination of theory for electrical explosion protection and investigation of operation condition of selected95 companies, to eseblish the safety standard of explosion protection for eletrical eqiupments that explosion is possible.

  • PDF

조사연구-분진폭발에 대한 소고

  • Lee, Ji-Seop
    • Fire Protection Technology
    • /
    • s.19
    • /
    • pp.29-35
    • /
    • 1995
  • This decument, translated and rearranged deseribes the features of dust explosion and the factors which have an important effect upon the hazard of dust explosion on the purpose of prevention the disaster caused by dust explosion. The dust explosion exist close to our common life as latently, but it seems to be overlooking in com-mon, regretably Tr need to be evoked.

  • PDF

A study on the Prediction of Explosion Risk for the Low Pressure Natural Gas Facilities with Different Explosion Conditions (저압 도시가스 사용설비의 누출 조건에 따른 폭발 위험 분위기 형성 범위 예측에 관한 연구)

  • Han, Sangil;Lee, Dongwook;Hwang, Kyu-Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.59-65
    • /
    • 2016
  • It is imperative to use suitable explosion proof equipments to prevent explosion in different gas facilities. There is no technical standard for the classification of hazardous areas though standard of explosion proof is regulated. In this study, we have adopted Industrial Standard KS to develop the methodology for the prediction of the explosion risk in the natural gas facility with low pressure using the important factors including hole size, hypothetical volume, validation of ventilation effectiveness. The applicability of the developed methodology was evaluated by the comparison with the data obtained from experiments of natural gas explosion.

A Study on the Mitigation of Vapor Explosions with Tin-Water Sytem (주석-물 시스템의 증기폭발 완화에 대한 연구)

  • Shin Y.S.;Kim J.H.;Hong S.W.;Song J.H.;Kim H.D.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.397-400
    • /
    • 2002
  • Vapor explosion is one of the most important problems encountered in severe accident management of nuclear power plants. In spite of many efforts, a lot of questions still remain. So, KAERI launched a real experimental program called TROI using $UO_{2}$ and $ZrO_{2}$ to investigate the vapor explosion. Besides TROI tests, a small-scale experiment with molten-tin/water system was performed to quantify the characteristics of vapor explosion and to understand the phenomenology of vapor explosion. A vapor explosion was observed while the amount of air bubble and water temperature were systematically varied The mass and temperature of tin are $50\;g\;and\;150^{\circ}C$, respectively. Water temperature is set to $24^{\circ}C\;and\;50^{\circ}C$. The void fraction of air bubble ranges from $0\;to\;10\;{\%}$. The strength of vapor explosion was measured using dynamic pressure sensors attached in reactor tube wall. as a function of void fraction. In addition, a high speed video filming up to 1,000 flame/sec was taken in order to visually investigate the behavior of the vapor explosion .

  • PDF

Prediction of Explosion Limits of Organic Acids Using Combustion Chemical Stoichiometric Coefficients and Heats of Combustion (연소열 및 화학양론계수를 이용한 유기산류의 폭발한계의 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.47-51
    • /
    • 2013
  • The explosion limit is one of the major combustion properties used to determine the fire and explosion hazards of the flammable substances. The explosion limit of organic acids have been shown to be correlated the heat of combustion and the chemical stoichiometric coefficients. In this study, the lower explosion and upper explosion limits of organic acids were predicted by using the heat of combustion and chemical stoichiometric coefficients. The values calculated by the proposed equations agreed with literature data within a few percent. From the given results, using the proposed methodology, it is possible to predict the explosion limits of the other organic acids.

The cause and prevention for dust accident and necessity of safety device (분진사고의 원인 및 대응방안과 안전장치의 필요성)

  • Oh, Sun-Il;Joo, Yong-Ma;Kim, Bu-Yeol;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.77-82
    • /
    • 2011
  • In the industrial site of 21st century, there are many and various powders of material, product and fuel of coal, chemical, detergent, paint, feed and more. Therefore, there always is a possible danger of dust explosion in each and every procedure and actually, there are increasing frequency of dust explosion as the use of dust and its amount increases in processes. Therefore, if we leave the current status like now, the unexpected massive dust explosion and its risk cannot be effectively prevented so there has to be effective application of understanding and development of explosion-prevention technology about dust explosion. Therefore, this research set the limit of research to systematically arrange the research results about dust explosion phenomenon and its prevention up to date and has its purpose to theoretically establish the prevention technology about dust explosion based on these theories.

Ex-vessel Steam Explosion Analysis for Pressurized Water Reactor and Boiling Water Reactor

  • Leskovar, Matjaz;Ursic, Mitja
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.72-86
    • /
    • 2016
  • A steam explosion may occur during a severe accident, when the molten core comes into contact with water. The pressurized water reactor and boiling water reactor ex-vessel steam explosion study, which was carried out with the multicomponent three-dimensional Eulerian fuel-coolant interaction code under the conditions of the Organisation for Economic Co-operation and Development (OECD) Steam Explosion Resolution for Nuclear Applications project reactor exercise, is presented and discussed. In reactor calculations, the largest uncertainties in the prediction of the steam explosion strength are expected to be caused by the large uncertainties related to the jet breakup. To obtain some insight into these uncertainties, premixing simulations were performed with both available jet breakup models, i.e., the global and the local models. The simulations revealed that weaker explosions are predicted by the local model, compared to the global model, due to the predicted smaller melt droplet size, resulting in increased melt solidification and increased void buildup, both reducing the explosion strength. Despite the lower active melt mass predicted for the pressurized water reactor case, pressure loads at the cavity walls are typically higher than that for the boiling water reactor case. This is because of the significantly larger boiling water reactor cavity, where the explosion pressure wave originating from the premixture in the center of the cavity has already been significantly weakened on reaching the distant cavity wall.

A Study on the Improvement of Classification of Explosion Hazardous Area using Hypothetic Volume through Release Characteristic (누출특성을 통한 폭발위험장소 선정방법의 개선에 대한 연구)

  • Kim, Dae-Yeon;Chon, Young-Woo;Lee, Ik-Mo;Hwang, Yong-Woo
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.2
    • /
    • pp.31-39
    • /
    • 2017
  • Classify of explosion hazardous areas must be made at the site where flammable materials are used. This reason is that it is necessary to manage ignition sources in of explosion hazardous areas in order to reduce the risk of explosion. If such an explosion hazard area is widened, it becomes difficult to increase the number of ignition sources to be managed. The method using the virtual volume currently used is much wider than the result using CFD(Computational Fluid Dynamics). Therefore, we tried to improve the current method to compare with the new method using leakage characteristics. The result is a realistic explosion hazard if the light gas is calibrated to the mass and the heavy gas is calibrated to the lower explosion limit. However, it is considered that the safety factors should be taken into account in the calculated correction formula because such a problem should be considered as a buffer for safety.