In this paper, we propose new multiuser detectors (MUDs) based on compressed sensing approaches for the large-scale multiple antenna systems equipped with dozens of low-power antennas. We consider the scenarios where the number of receiver antennas is smaller than the total number of users, but the number of active users is relatively small. This prior information motivates sparsity-embracing MUDs such as sparsity-embracing linear/nonlinear MUDs where the detection of active users and their symbol detection are employed. In addition, sparsity-embracing MUDs with maximum a posteriori probability criterion (MAP-MUDs) are presented. They jointly detect active users and their symbols by exploiting the probability of user activity, and it can be solved efficiently by introducing convex relaxing senses. Furthermore, it is shown that sparsity-embracing MUDs exploiting common users' activity across multiple symbols, i.e., frame-by-frame, can be considered to improve performance. Also, in multiple multiple-input and multiple-output networks with aggressive frequency reuse, we propose the interference cancellation strategy for the proposed sparsity-embracing MUDs. That first cancels out the interference induced by adjacent networks and then recovers the desired users' information by exploiting the low user activity. In simulation studies for binary phase shift keying modulation, numerical evidences establish the effectiveness of our proposed MUDs exploiting low user activity, as compared with the conventional MUD.
In this paper, new methods for efficiently solving linear acceleration equations of multibody dynamic simulation exploiting sparsity for real-time simulation are presented. The coefficient matrix of the equations tends to have a large number of zero entries according to the relative joint coordinate numbering. By adequate joint coordinate numbering, the matrix has minimum off-diagonal terms and a block pattern of non-zero entries and can be solved efficiently. The proposed methods, using sparse Cholesky method and recursive block mass matrix method, take advantages of both the special structure and the sparsity of the coefficient matrix to reduce computation time. The first method solves the η$\times$η sparse coefficient matrix for the accelerations, where η denotes the number of relative coordinates. In the second method, for vehicle dynamic simulation, simple manipulations bring the original problem of dimension η$\times$η to an equivalent problem of dimension 6$\times$6 to be solved for the accelerations of a vehicle chassis. For vehicle dynamic simulation, the proposed solution methods are proved to be more efficient than the classical approaches using reduced Lagrangian multiplier method. With the methods computation time for real-time vehicle dynamic simulation can be reduced up to 14 per cent compared to the classical approach.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.46
no.5
/
pp.25-31
/
2009
The recently developed sampling theory, "compressed sensing" is gathering huge interest in MR reconstruction area because of its feasibility of high spatio-temporal resolution of dynamic MRI which has been limited in conventional methods based on Nyquist sampling theory. Since dynamic MRI usually has high redundant information along temporal direction, this can be very sparsely represented in most of cases. Therefore, compressed sensing that exploits the sparsity of unknown images can be effectively applied in most of dynamic MRI. This review article briefly introduces currently proposed compressed sensing based dynamic MR imaging algorithms and other methods exploiting sparsity. By comparing them with conventional methods, you may have insight how the compressed sensing based methods can impact nearly every area of clinical dynamic MRI.
Purpose: The management of metal-induced field inhomogeneities is one of the major concerns of distortion-free magnetic resonance images near metallic implants. The recently proposed method called "Slice Encoding for Metal Artifact Correction (SEMAC)" is an effective spin echo pulse sequence of magnetic resonance imaging (MRI) near metallic implants. However, as SEMAC uses the noisy resolved data elements, SEMAC images can have a major problem for improving the signal-to-noise ratio (SNR) without compromising the correction of metal artifacts. To address that issue, this paper presents a novel reconstruction technique for providing an improvement of the SNR in SEMAC images without sacrificing the correction of metal artifacts. Materials and Methods: Low-rank approximation in each coil image is first performed to suppress the noise in the slice direction, because the signal is highly correlated between SEMAC-encoded slices. Secondly, SEMAC images are reconstructed by the best linear unbiased estimator (BLUE), also known as Gauss-Markov or weighted least squares. Noise levels and correlation in the receiver channels are considered for the sake of SNR optimization. To this end, since distorted excitation profiles are sparse, $l_1$ minimization performs well in recovering the sparse distorted excitation profiles and the sparse modeling of our approach offers excellent correction of metal-induced distortions. Results: Three images reconstructed using SEMAC, SEMAC with the conventional two-step noise reduction, and the proposed image denoising for metal MRI exploiting sparsity and low rank approximation algorithm were compared. The proposed algorithm outperformed two methods and produced 119% SNR better than SEMAC and 89% SNR better than SEMAC with the conventional two-step noise reduction. Conclusion: We successfully demonstrated that the proposed, novel algorithm for SEMAC, if compared with conventional de-noising methods, substantially improves SNR and reduces artifacts.
Cho, Yunseong;Paik, Ji-Woong;Lee, Joon-Ho;Ko, Yo Han;Cho, Sung-Woo
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.27
no.4
/
pp.388-394
/
2016
There have been many studies on the direction-of-arrival(DOA) estimation algorithm using antenna arrays. Beamforming, Capon's method, maximum likelihood, MUSIC algorithms are the main algorithms for the DOA estimation. Recently, compressive sensing-based DOA estimation algorithm exploiting the sparsity of the incident signals has attracted much attention in the signal processing community. In this paper, the performance of the L1-SVD algorithm, which is based on fitting of the data matrix, is compared with that of the MUSIC algorithm.
Proceedings of the Korean Operations and Management Science Society Conference
/
1998.10a
/
pp.63-66
/
1998
In the implementation of the simplex method program, the representation and the maintenance of basis matrix is very important, In the experimental study, we investigates Suhl's idea in the LU factorization and LU update of basis matrix. First, the triangularization of basis matrix is implemented and its efficiency is shown. Second, various technique in the dynamic Markowitz's ordering and threshold pivoting are presented. Third, modified Forrest-Tomlin LU update method exploiting sparsity is presented. Fourth, as a storage scheme of LU factors, Gustavson data structure is explained. Fifth, efficient timing of reinversion is developed. Finally, we show that modified Forrest-Tomlin method with Gustavson data structure is superior more than 30% to the Reid method with linked list data structure.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.2
/
pp.657-667
/
2019
This paper studies synthetic aperture radar (SAR) imaging problem which the scatterers are often distributed in block sparse pattern. To exploiting the sparse geometrical feature, a Kronecker constrained SAR imaging algorithm is proposed by combining the block sparse characteristics with the multiway sparse reconstruction framework with Tucker modeling. We validate the proposed algorithm via real data and it shows that the our algorithm can achieve better accuracy and convergence than the reference methods even in the demanding environment. Meanwhile, the complexity is smaller than that of the existing methods. The simulation experiments confirmed the effectiveness of the algorithm as well.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.2
/
pp.583-599
/
2015
We apply the Bayesian matching pursuit (BMP) algorithm to the estimation of time-frequency selective channels in orthogonal frequency division multiplexing (OFDM) systems. By exploiting prior statistics and sparse characteristics of propagation channels, the Bayesian method provides a more accurate and efficient detection of the channel status information (CSI) than do conventional sparse channel estimation methods that are based on compressive sensing (CS) technologies. Using a reasonable approximation of the system model and a skillfully designed pilot arrangement, the proposed estimation scheme is able to address the Doppler-induced inter-carrier interference (ICI) with a relatively low complexity. Moreover, to further reduce the computational cost of the channel estimation, we make some modifications to the BMP algorithm. The modified algorithm can make good use of the group-sparse structure of doubly selective channels and thus reconstruct the CSI more efficiently than does the original BMP algorithm, which treats the sparse signals in the conventional manner and ignores the specific structure of their sparsity patterns. Numerical results demonstrate that the proposed Bayesian estimation has a good performance over rapidly time-varying channels.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.3
/
pp.1614-1632
/
2017
Bag of visual words is a popular model in human action recognition, but usually suffers from loss of spatial and temporal configuration information of local features, and large quantization error in its feature coding procedure. In this paper, to overcome the two deficiencies, we combine sparse coding with spatio-temporal pyramid for human action recognition, and regard this method as the baseline. More importantly, which is also the focus of this paper, we find that there is a hierarchical structure in feature vector constructed by the baseline method. To exploit the hierarchical structure information for better recognition accuracy, we propose a tree regularized classifier to convey the hierarchical structure information. The main contributions of this paper can be summarized as: first, we introduce a tree regularized classifier to encode the hierarchical structure information in feature vector for human action recognition. Second, we present an optimization algorithm to learn the parameters of the proposed classifier. Third, the performance of the proposed classifier is evaluated on YouTube, Hollywood2, and UCF50 datasets, the experimental results show that the proposed tree regularized classifier obtains better performance than SVM and other popular classifiers, and achieves promising results on the three datasets.
Park, Jaihyun;Yang, Cheoljong;Ku, Bonwha;Lee, Seungho;Kim, Seongil;Ko, Hanseok
The Journal of the Acoustical Society of Korea
/
v.37
no.1
/
pp.12-20
/
2018
Efforts have been made to reconstruct low-resolution underwater images to high-resolution ones by using the image SR (Super-Resolution) method, all to improve efficiency when acquiring side-scan sonar images. As side-scan sonar images are similar with the optical images with respect to exploiting 2-dimensional signals, conventional image restoration methods for optical images can be considered as a solution. One of the most typical super-resolution methods for optical image is a sparse coding and there are studies for verifying applicability of sparse coding method for underwater images by analyzing sparsity of underwater images. Sparse coding is a method that obtains recovered signal from input signal by linear combination of dictionary and sparse coefficients. However, it requires huge computational load to accurately estimate sparse coefficients. In this study, a sparse coding based underwater image super-resolution method is applied while a selective reconstruction method for object region is suggested to reduce the processing time. For this method, this paper proposes an edge detection and object and non object region classification method for underwater images and combine it with sparse coding based image super-resolution method. Effectiveness of the proposed method is verified by reducing the processing time for image reconstruction over 32 % while preserving same level of PSNR (Peak Signal-to-Noise Ratio) compared with conventional method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.