• Title/Summary/Keyword: Explicit Dynamic Analysis

Search Result 173, Processing Time 0.02 seconds

Random dynamic analysis for simplified vehicle model based on explicit time-domain method

  • Huan Huang;Yuyu Li;Wenxiong Li;Guihe Tang
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • On the basis of the explicit time-domain method, an investigation is performed on the influence of the rotational stiffness and rotational damping of the vehicle body and front-rear bogies on the dynamic responses of the vehicle-bridge coupled systems. The equation of motion for the vehicle subsystem is derived employing rigid dynamical theories without considering the rotational stiffness and rotational damping of the vehicle body, as well as the front-rear bogies. The explicit expressions for the dynamic responses of the vehicle and bridge subsystems to contact forces are generated utilizing the explicit time-domain method. Due to the compact wheel-rail model, which reflects the compatibility requirement of the two subsystems, the explicit expression of the evolutionary statistical moment for the contact forces may be performed with relative ease. Then, the evolutionary statistical moments for the respective responses of the two subsystems can be determined. The numerical results indicate that the simplification of vehicle model has little effect on the responses of the bridge subsystem and the vehicle body, except for the responses of the rotational degrees of freedom for the vehicle subsystem, regardless of whether deterministic or random analyses are performed.

A Comparative Study on Elastic-Plastic -Dynamci Analysis of Sheet Metal Forming (탄소성 동적해석시 해에 미치는 여러 인자들의 비교연구)

  • 박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.245-248
    • /
    • 1999
  • Explicit dynamic finite element analysis has been used widely in the field of sheet metal forming. However in using the analysis technique there are some parameters which are not clearly defined so that engineers may obtain inaccurate solutions In the present study parameters such as time step damping ratio penalty constant and punch speed were investigated on their influence to the solution behavior. Considered forming processes are plane stain bending by a punch and axisymmetric deep drawing.

  • PDF

A Study on the Behavior of Wrinkling in the Square Cup Deep Drawing of Al Alloy (Al합금의 사각용기 딥드로잉시 주름의 거동에 관한 연구)

  • Ko, Dae-Lim;Jung, Dong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.276-282
    • /
    • 2009
  • Wrinkling in the flange and wall of a deep-drawn part is one of the major defects in sheet metal processes. Wrinkling is influenced by many factors, such as material properties, shape of the body, forming conditions, stress state and thickness, etc. It is difficult to analyze the wrinkling initiation and growth according to the factors because the effects of the factors are very complex and the wrinkling behavior may show wide variation even though small deviation of factors. In this study, the influence of wrinkling parameters, such as material properties (Al1050, Al5052), the blank holding force and the drawing depth on the wrinkling initiation and growth is investigated by using the experimental method and the dynamic explicit finite element analysis. From the results, it is shown that the dynamic explicit finite element method can be used effectively to prevent the wrinkling problems advancely in the deep drawing process. Also, there is a good agreement between the experimental result and the dynamic explicit finite element analysis.

A Four-Node Assumed Strain Plate Element for Explicit Dynamic Transient Analysis (명시적인 동적 시간이력해석을 한 사절점 가변형도 평판요소)

  • 이상진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.349-359
    • /
    • 2001
  • An enhanced four-node plate element, which has been developed for explicit dynamic analysis of plate, is described in this paper. Reissner-Mind1in(RM) assumptions are adopted to consider transverse shear deformation effects in the present plate element. RM plate element produces a shear locking phenomena in thin plate so that the substitute natural strains based on assumed strain method are explicitly derived. The present plate element is applied into the explicit transient algorithm and the mass matrix of plate is formulated by using special lumping method proposed by Hinton et al. The performance of the element is verified with numerical examples.

  • PDF

Impact Analysis of Spiral type Electrodes in Vacuum Circuit Breaker (진공회로차단기용 횡자계방식 접점의 충격해석)

  • Park, W.J.;Ahn, K.Y.;Oh, I.S.;Huh, H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.895-900
    • /
    • 2001
  • It is very important for impact analysis to reflect the dynamic characteristics of materials as well as the static characteristics. As the dynamic behavior of a material is different from the static(or quasi-static) one due to the inertia effect and the stress wave propagation, an adequate experimental technique has to be developed to obtain the dynamic responses for the corresponding level of the strain rate. To determine the dynamic characteristics of materials, the Hopkinson bar (compression type) experiment is carried out. For using dynamic material properties, Johnson-Cook model is applied in impact analysis with explicit finite element method

  • PDF

Dynamic buckling analysis of a composite stiffened cylindrical shell

  • Patel, S.N.;Bisagni, C.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.509-527
    • /
    • 2011
  • The paper investigates the dynamic buckling behaviour of a laminated composite stiffened cylindrical shell using the commercial finite element code ABAQUS. The numerical model of the composite shell is validated by static tests. In particular, the experimental collapse test is numerically simulated by a quasi static analysis carried out by both ABAQUS/Standard and ABAQUS/Explicit. The behaviour in the post-buckling field and the collapse load obtained by the analyses are close to the experimental data. The validated model is then used to study the dynamic buckling behaviour with ABAQUS/Explicit. The effects of the loading magnitude and of the loading duration are investigated, implementing in the analysis also first-ply failure criteria. It is observed that the dynamic buckling load is highly affected by the loading duration.

An explicit time-integration method for damped structural systems

  • Pezeshk, S.;Camp, C.V.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.2
    • /
    • pp.145-162
    • /
    • 1995
  • A damped trapezoidal rule method for numerical time-integration is presented, and its application in analyses of dynamic response of damped structures is discussed. It is shown that the damped trapezoidal rule method has features that make it an attractive approach for applications in dynamic analyses of structures. Accuracy and stability analyses are developed for the damped single-degree-of-freedom systems. Error analyses are also performed for the Newmark beta method and compared with the damped trapezoidal rule method as a basis for discussion of the relative merits of the proposed method. The procedure is fully explicit and easy to implement. However, since the method is an explicit method, it is conditionally stable. The methodology is applied to several example problems to illustrate its strengths, limitations and inherent simplicity.

A Study on the Algorithm for Nonlinear Dynamic Response Analysis of Shell Structure (쉘 구조물의 비선형 동적응답 해석을 위한 Algorithm에 관한 연구)

  • 최찬문
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.2
    • /
    • pp.164-176
    • /
    • 1996
  • The main intention of this paper is to develop and compare the algorithm based on finite element procedures for nonlinear transient dynamic analysis which has combined effects of material and geometric nonlinearities. Incremental equilibrium equations based on the principle of virtual work are derived by the finite element approach. For the elasto - plastic large deformation analysis of shells and the determination of the displacement-time configuration under time-varying loads, the explicit, implicit and combined explicit-implicit time integration algorithm is adopted. In the time structure is selected and the results are compared with each others. Isoparametric 8-noded quadrilateral curved elements are used for shell structure in the analysis and for geometrically nonlinear elastic behaviour, a total Lagrangian coordinate system was adopted. On the other hands, material nonlinearity is based on elasto-plastic models with Von-Mises yield criteria. Thus, the combined explicit-implicit time integration algorithm is benefit in general case of shell structure, which is the result of this paper.

  • PDF

Rigid-Plastic Explicit Finite Element Formulation for Two-Dimensional Analysis of Sheet Metal Processes (2차원 박판성형공정해석을 위한 강소성 외연적 유한 요소수식화)

  • 안동규;정동원;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.206-211
    • /
    • 1993
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solution since it improves the convergency problem,memory size and computational time especially for the case of complicated geometry and large element number. In the present work, a basic formulation for rigid-plastic explicit finite element analysis of plain strain sheet metal forming problems has been proposed. The effect of some basic parameters involved in the dynamic analysis has been studied in detail. A direct trial-and-error method is introduced to treat contact and friction. In order to show the validity and effectiveness of the proposed explicit scheme, computation are carried out for cylindrical punch stretching and the computational results are compared with those by the implicit scheme as well as with a commercial code. The proposed rigid-plastic explicit element method can be used as a robust and efficient computational method for analysis of sheet method forming.

  • PDF

Ultimate load capacity of unit Strarch frames using an explicit numerical method

  • Lee, Kyoungsoo;Hong, Jung-Wuk;Han, Sang-Eul
    • Steel and Composite Structures
    • /
    • v.13 no.6
    • /
    • pp.539-560
    • /
    • 2012
  • This study uses an explicit numerical algorithm to evaluate the ultimate load capacity analysis of a unit Strarch frame, accounting for the initial imperfection effects of the stress-erection process. Displacement-based filament beam element and an explicit dynamic relaxation method with kinetic damping are used to achieve the analysis. The section is composed of the finite number of filaments that can be conveniently modeled by various material models. Ramberg-Osgood and bilinear kinematic elastic plastic material models are formulated to analyze the nonlinear material behaviors of filaments. The numerical results obtained in the present study are compared with the results of experiment for stress-erection and buckling of unit Strarch frames.