• Title/Summary/Keyword: Explicit Algebraic Heat-Flux Model

Search Result 2, Processing Time 0.015 seconds

Assessment of Explicit Algebraic Stress/Heat-Flux Models for Reduction of Heat Transfer in a Vertical Pipe with Intense Heating (Explicit Algebraic Stress/Heat-Flux 모형을 이용한 벽면가열이 높은 수직관 내의 열전달 감소에 대한 수치적 해석)

  • Baek, Seong-Gu;Park, Seung-O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1724-1733
    • /
    • 2003
  • This paper assesses the prediction performance of explicit algebraic stress and heat-flux models for reduction of heat transfer coefficient in a strongly-heated vertical tube. Two explicit algebraic stress models and four explicit algebraic heat-flux models are selected for assessment. Eight combinations of explicit algebraic stress and heat-flux models are used in predicting the turbulent gas flows with intense heating, which yields the significant property-variation. The results showed that the two combinations of GS-AKN and WJ-mAKN predicted the Nusselt number and the axial wall temperature variations well and that the predictions of Nusselt number with WJ-combinations spread in a wider range than those with Gs-combinations. WJ is the explicit algebraic stress model of Wallin and Johansson and GS is the model of Gatski and Speziale and that AKN is the explicit heat-flux model of Abe, Kondoh and Nagano and mAKN is the modified AKN.

Numerical Simulation of Turbulent Heat Transfer in a Channel with One Wavy Wall (파형벽면이 있는 채널내의 난류열전달에 대한 수치해석)

  • Park Tae-Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.49-59
    • /
    • 2005
  • Turbulent heat transfer over a fully-developed wavy channel is investigated by a turbulence model. The nonlinear k- f - f$_{ model of Park et at.[1] is slightly modified and their explicit algebraic heat flux model is employed. The Reynolds number is fixed at Re$_{b}$=6760 and the wave configuration is varied in the range of 0 $\leq$ $\alpha$/$\lambda$$\leq$0.15 and 0.25 $\leq$A/H$\leq$4.0. In order to verify model performances, a large eddy simulation is performed for the selected cases. The model performance is shown to be generally satisfactory. By using k- $\varepsilon$ - f$_{ model, the enhancement of heat transfer and the characteristics of turbulent flow in wavy wall are investigated. Finally, the influence of wavy configuration on heat transfer is scrutinized.