• Title/Summary/Keyword: Expert knowledge

Search Result 1,296, Processing Time 0.024 seconds

A Knowledge-Based Fuzzy Post-Adjustment Mechanism:An Application to Stock Market Timing Analysis

  • Lee, Kun-Chang
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.1
    • /
    • pp.159-177
    • /
    • 1995
  • The objective of this paper is to propose a knowledge-based fuzzy post adjustment so that unstructured problems can be solved more realistically by expert systems. Major part of this mechanism forcuses on fuzzily assessing the influence of various external factors and accordingly improving the solutions of unstructured problem being concerned. For this purpose, three kinds of knowledge are used : user knowledge, expert knowledge, and machine knowledge. User knowledge is required for evaluating the external factors as well as operating the expert systems. Machine knowledge is automatically derived from historical instances of a target problem domain by using machine learning techniques, and used as a major knowledge source for inference. Expert knowledge is incorporate dinto fuzzy membership functions for external factors which seem to significantly affect the target problems. We applied this mechanism to a prototyoe expert system whose major objective is to provide expert guidance for stock market timing such as sell, buty, or wait. Experiments showed that our proposed mechanism can improve the solution quality of expert systems operating in turbulent decision-making environments.

  • PDF

Automation of Expert Classification in Knowledge Management Systems Using Text Categorization Technique (문서 범주화를 이용한 지식관리시스템에서의 전문가 분류 자동화)

  • Yang, Kun-Woo;Huh, Soon-Young
    • Asia pacific journal of information systems
    • /
    • v.14 no.2
    • /
    • pp.115-130
    • /
    • 2004
  • This paper proposes how to build an expert profile database in KMS, which provides the information of expertise that each expert possesses in the organization. To manage tacit knowledge in a knowledge management system, recent researches in this field have shown that it is more applicable in many ways to provide expert search mechanisms in KMS to pinpoint experts in the organizations with searched expertise so that users can contact them for help. In this paper, we develop a framework to automate expert classification using a text categorization technique called Vector Space Model, through which an expert database composed of all the compiled profile information is built. This approach minimizes the maintenance cost of manual expert profiling while eliminating the possibility of incorrectness and obsolescence resulted from subjective manual processing. Also, we define the structure of expertise so that we can implement the expert classification framework to build an expert database in KMS. The developed prototype system, "Knowledge Portal for Researchers in Science and Technology," is introduced to show the applicability of the proposed framework.

An Implementation of Expert System wiht Knowledge Acquisition System (지식 획득 시스템을 갖춘 전문가 시스템의 구현)

  • Seo, Ui-Hyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.5
    • /
    • pp.1434-1445
    • /
    • 2000
  • An expert system executes the inference, based on the knowledge of specific domain. the reliability on the results of inference depends upon both the consistency and accuracy of knowledge. This is the reason why expert system requires the facilities which can practice an access to the various kinds of knowledge and maintain the consistency and accuracy of knowledge an maintain the consistency and accuracy of knowledge. This paper is to implement an expert system permitting an access of declarative and procedural knowledge in the knowledge base and in the data base. This paper is also to implement a knowledge acquisition system which adds the knowledge a only if its accuracy and consistency are maintained, after verifying the potential errors such as contradiction, redundancy, circulation, non-reachable rule and non-lined rule. In consequence, the expert system realizes a good access to the various sorts of knowledge and increases the reliability on the results of inference. The knowledge acquisition system contributes tro strengthening man-machine interface that enables users to add the knowledge easily to the knowledge base.

  • PDF

RDB-based Automatic Knowledge Acquisition and Forward Inference Mechanism for Self-Evolving Expert Systems

  • Kim, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.743-748
    • /
    • 2003
  • In this research, we propose a mechanism to develop an inference engine and expert systems based on relational database (RDB) and SQL (structured query language). Generally, former researchers had tried to develop an expert systems based on text-oriented knowledge base and backward/forward (chaining) inference engine. In these researches, however, the speed of inference was remained as a tackling point in the development of agile expert systems. Especially, the forward inference needs more times than backward inference. In addition, the size of knowledge base, complicate knowledge expression method, expansibility of knowledge base, and hierarchies among rules are the critical limitations to develop an expert system. To overcome the limitations in speed of inference and expansibility of knowledge base, we proposed a relational database-oriented knowledge base and forward inference engine. Therefore, our proposed mechanism could manipulate the huge size of knowledge base efficiently. and inference with the large scaled knowledge base in a short time. To this purpose, we designed and developed an SQL-based forward inference engine using relational database. In the implementation process, we also developed a prototype expert system and presented a real-world validation data set collected from medical diagnosis field.

Self-Evolving Expert Systems based on Fuzzy Neural Network and RDB Inference Engine

  • Kim, Jin-Sung
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.2
    • /
    • pp.19-38
    • /
    • 2003
  • In this research, we propose the mechanism to develop self-evolving expert systems (SEES) based on data mining (DM), fuzzy neural networks (FNN), and relational database (RDB)-driven forward/backward inference engine. Most researchers had tried to develop a text-oriented knowledge base (KB) and inference engine (IE). However, this approach had some limitations such as 1) automatic rule extraction, 2) manipulation of ambiguousness in knowledge, 3) expandability of knowledge base, and 4) speed of inference. To overcome these limitations, knowledge engineers had tried to develop an automatic knowledge extraction mechanism. As a result, the adaptability of the expert systems was improved. Nonetheless, they didn't suggest a hybrid and generalized solution to develop self-evolving expert systems. To this purpose, we propose an automatic knowledge acquisition and composite inference mechanism based on DM, FNN, and RDB-driven inference engine. Our proposed mechanism has five advantages. First, it can extract and reduce the specific domain knowledge from incomplete database by using data mining technology. Second, our proposed mechanism can manipulate the ambiguousness in knowledge by using fuzzy membership functions. Third, it can construct the relational knowledge base and expand the knowledge base unlimitedly with RDBMS (relational database management systems) module. Fourth, our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy relationships. Fifth, RDB-driven forward and backward inference time is shorter than the traditional text-oriented inference time.

  • PDF

Data Mining and FNN-Driven Knowledge Acquisition and Inference Mechanism for Developing A Self-Evolving Expert Systems

  • Kim, Jin-Sung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.99-104
    • /
    • 2003
  • In this research, we proposed the mechanism to develop self evolving expert systems (SEES) based on data mining (DM), fuzzy neural networks (FNN), and relational database (RDB)-driven forward/backward inference engine. Most former researchers tried to develop a text-oriented knowledge base (KB) and inference engine (IE). However, thy have some limitations such as 1) automatic rule extraction, 2) manipulation of ambiguousness in knowledge, 3) expandability of knowledge base, and 4) speed of inference. To overcome these limitations, many of researchers had tried to develop an automatic knowledge extraction and refining mechanisms. As a result, the adaptability of the expert systems was improved. Nonetheless, they didn't suggest a hybrid and generalized solution to develop self-evolving expert systems. To this purpose, in this study, we propose an automatic knowledge acquisition and composite inference mechanism based on DM, FNN, and RDB-driven inference. Our proposed mechanism has five advantages empirically. First, it could extract and reduce the specific domain knowledge from incomplete database by using data mining algorithm. Second, our proposed mechanism could manipulate the ambiguousness in knowledge by using fuzzy membership functions. Third, it could construct the relational knowledge base and expand the knowledge base unlimitedly with RDBMS (relational database management systems). Fourth, our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic. Fifth, RDB-driven forward and backward inference is faster than the traditional text-oriented inference.

  • PDF

A Development of Forward Inference Engine and Expert Systems based on Relational Database and SQL

  • Kim, Jin-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.49-52
    • /
    • 2003
  • In this research, we propose a mechanism to develop an inference engine and expert systems based on relational database and SQL (structured query language). Generally, former researchers had tried to develop an expert systems based on text-oriented knowledge base and backward/forward (chaining) inference engine. In these researches, however, the speed of inference was remained as a tackling point in the development of agile expert systems. Especially, the forward inference needs more times than backward inference. In addition, the size of knowledge base, complicate knowledge expression method, expansibility of knowledge base, and hierarchies among rules are the critical limitations to develop an expert systems. To overcome the limitations in speed of inference and expansibility of knowledge base, we proposed a relational database-oriented knowledge base and forward inference engine. Therefore, our proposed mechanism could manipulate the huge size of knowledge base efficiently, and inference with the large scaled knowledge base in a short time. To this purpose, we designed and developed an SQL-based forward inference engine using relational database. In the implementation process, we also developed a prototype expert system and presented a real-world validation data set collected from medical diagnosis field.

  • PDF

Development of Expert Systems using Automatic Knowledge Acquisition and Composite Knowledge Expression Mechanism

  • Kim, Jin-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.447-450
    • /
    • 2003
  • In this research, we propose an automatic knowledge acquisition and composite knowledge expression mechanism based on machine learning and relational database. Most of traditional approaches to develop a knowledge base and inference engine of expert systems were based on IF-THEN rules, AND-OR graph, Semantic networks, and Frame separately. However, there are some limitations such as automatic knowledge acquisition, complicate knowledge expression, expansibility of knowledge base, speed of inference, and hierarchies among rules. To overcome these limitations, many of researchers tried to develop an automatic knowledge acquisition, composite knowledge expression, and fast inference method. As a result, the adaptability of the expert systems was improved rapidly. Nonetheless, they didn't suggest a hybrid and generalized solution to support the entire process of development of expert systems. Our proposed mechanism has five advantages empirically. First, it could extract the specific domain knowledge from incomplete database based on machine learning algorithm. Second, this mechanism could reduce the number of rules efficiently according to the rule extraction mechanism used in machine learning. Third, our proposed mechanism could expand the knowledge base unlimitedly by using relational database. Fourth, the backward inference engine developed in this study, could manipulate the knowledge base stored in relational database rapidly. Therefore, the speed of inference is faster than traditional text -oriented inference mechanism. Fifth, our composite knowledge expression mechanism could reflect the traditional knowledge expression method such as IF-THEN rules, AND-OR graph, and Relationship matrix simultaneously. To validate the inference ability of our system, a real data set was adopted from a clinical diagnosis classifying the dermatology disease.

  • PDF

A knowledge Conversion Tool for Expert Systems

  • Kim, Jin-S.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Most of expert systems use the text-oriented knowledge bases. However, knowledge management using the knowledge bases is considered as a huge burden to the knowledge workers because it includes some troublesome works. It includes chasing and/or checking activities on Consistency, Redundancy, Circulation, and Refinement of the knowledge. In those cases, we consider that they could reduce the burdens by using relational database management systems-based knowledge management infrastructure and convert the knowledge into one of easy forms human can understand. Furthermore they could concentrate on the knowledge itself with the support of the systems. To meet the expectations, in this study, we have tried to develop a general-purposed knowledge conversion tool for expert systems. Especially, this study is focused on the knowledge conversions among text-oriented knowledge base, relational database knowledge base, and decision tree.

A framework for the intergration of CIM databases using knowledge-based expert systems (지식기반형 전문가시스템을 이용한 CIM 데이타베이스의 통합)

  • 박남규;김기동;박진우
    • Korean Management Science Review
    • /
    • v.11 no.2
    • /
    • pp.65-77
    • /
    • 1994
  • One of the major issues in the implementation and maintenance of CIM databases is the sharing and exchange of information among the heterogeneous databases. This paper addresses some architectural aspects for integrating the heterogeneous multi-databases using knowledge-based expert systems. we propose a loosely integrated coupling system between databases and knowledge-based expert systems. Especially we suggest the architectural aspects of such a coupling methodology. we also present the structure and knowledge representation scheme for the proposed knowledge-based expert system. A prototype example is included to illustrate the framework and its mechanism for implementation.

  • PDF