• Title/Summary/Keyword: Experimental gain tuning

Search Result 50, Processing Time 0.022 seconds

A Method of PLL(Phase-Locked Loop) using FFT (FFT를 이용한 위상추종 방법)

  • Ryu, Kang-Ryul;Lee, Jong-Pil;Kim, Tae-Jin;Yoo, Dong-Wook;Song, Eui-Ho;Min, Byung-Duk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.206-212
    • /
    • 2008
  • This paper proposes the PLL(Phase-Locked Loop) algorithm by a new FFT(Fast Fourier Transform) in a grid-connected PV PCS(Photovoltaics Power Conditionning System). The grid-connected inverter that is applied in a new renewable energy field needs the grid phase information for synchronism. Unlike the PLL which is normally used by three phase D-Q conversion, the preposed PLL algorithm using FFT has non-gain tuning and the powerful noise elimination by the characteristics of FFT. Both simulation and experimental result show that proposed algorithm has the good capacity.

The comparison of the output characteristics of 2-DOF PID controller in the multivariable flow control system with delayed time (지연시간을 갖는 다변수 유량제어 시스템의 2-자유도 PID 제어기 특성 비교)

  • Kim, Dong-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.744-752
    • /
    • 1999
  • In this paper, we studied the response characteristics of $\alpha$, $\beta$ separated type, combined type, PI typed, and feedforward type in 2DOF-PID controller through the simulation and the experiments designed with the multivariable flow control system. The parameters $\alpha$ and $\beta$ give an affect to characteristics of controller in separated type but $\gamma$ does not give an affect to the characteristics of 2-DOF PID. The more $\beta$ increases, the more overshoot decreases and especially, in case of PI type represent clearly. The $\alpha$, $\beta$ separated type has a very small overshoot and its magnitudes in 2-DOF PID onctroller increases in order of $\alpha$, $\beta$ combined type, PI type, feedforward type, conventional type. The response characteristics of simulation are similar to that of experiments but the experimental characteristics in the multivariable flow control system has the delayed response. The time delay of response in experiments depends on 2-DOF parameter $\alpha$, $\beta$, $\gamma$ and the overshoot increase as the $\alpha$, $\beta$, $\gamma$ increase. So, we can have a satisfactory response by tuning D gain.

  • PDF

Human Visual System based Automatic Underwater Image Enhancement in NSCT domain

  • Zhou, Yan;Li, Qingwu;Huo, Guanying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.837-856
    • /
    • 2016
  • Underwater image enhancement has received considerable attention in last decades, due to the nature of poor visibility and low contrast of underwater images. In this paper, we propose a new automatic underwater image enhancement algorithm, which combines nonsubsampled contourlet transform (NSCT) domain enhancement techniques with the mechanism of the human visual system (HVS). We apply the multiscale retinex algorithm based on the HVS into NSCT domain in order to eliminate the non-uniform illumination, and adopt the threshold denoising technique to suppress underwater noise. Our proposed algorithm incorporates the luminance masking and contrast masking characteristics of the HVS into NSCT domain to yield the new HVS-based NSCT. Moreover, we define two nonlinear mapping functions. The first one is used to manipulate the HVS-based NSCT contrast coefficients to enhance the edges. The second one is a gain function which modifies the lowpass subband coefficients to adjust the global dynamic range. As a result, our algorithm can achieve contrast enhancement, image denoising and edge sharpening automatically and simultaneously. Experimental results illustrate that our proposed algorithm has better enhancement performance than state-of-the-art algorithms both in subjective evaluation and quantitative assessment. In addition, our algorithm can automatically achieve underwater image enhancement without any parameter tuning.

A New Resonance Prediction Method of Fabry-Perot Cavity (FPC) Antennas Enclosed with Metallic Side Walls

  • Kim, Dong-Ho;Yeo, Jun-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.220-226
    • /
    • 2011
  • We have proposed a new method to accurately predict the resonance of Fabry-Perot Cavity (FPC) antennas enclosed with conducting side walls. When lateral directions of an FPC antenna are not blocked with metallic walls, the conventional technique is accurate enough to predict the resonance of the FPC antenna. However, when the FPC antenna has side walls, especially for case with only a short distance between the walls, the conventional prediction method yields an inaccurate result, inevitably requiring a tedious, time-consuming tuning process to determine the correct resonant height to provide the maximum antenna gain in a target frequency band using three-dimensional full-wave computer simulations. To solve that problem, we have proposed a new resonance prediction method to provide a more accurate resonant height calculation of FPC antennas by using the well-known resonance behavior of a rectangular resonant cavity. For a more physically insightful explanation of the new prediction formula, we have reinvestigated our proposal using a wave propagation characteristic in a hollow rectangular waveguide, which clearly confirms our approach. By applying the proposed technique to an FPC antenna covered with a partially reflecting superstrate consisting of continuously tapered meander loops, we have proved that our method is very accurate and readily applicable to various types of FPC antennas with lateral walls. Experimental result confirms the validness of our approach.

Optimum Design of Integer and Fractional-Order PID Controllers for Boost Converter Using SPEA Look-up Tables

  • Amirahmadi, Ahmadreza;Rafiei, Mohammadreza;Tehrani, Kambiz;Griva, Giovanni;Batarseh, Issa
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.160-176
    • /
    • 2015
  • This paper presents a method of designing optimal integer- and fractional-order proportional-integral-derivative (FOPID) controllers for a boost converter to gain a set of favorable characteristics at various operating points. A Pareto-based multi-objective optimization approach called strength Pareto evolutionary algorithm (SPEA) is used to obtain fast and low overshoot start-up and dynamic responses and switching stability. The optimization approach generates a set of optimal gains called Pareto set, which corresponds to a Pareto front. The Pareto front is a set of optimal results for objective functions. These results provide designers with a trade-off look-up table, in which they can easily choose any of the optimal gains based on design requirements. The SPEA also overcomes the difficulties of tuning the FOPID controller, which is an extension to the classic integer-order PID controllers and potentially promises better results. The proposed optimized FOPID controller provides an excellent start-up response and the desired dynamic response. This paper presents a detailed comparison of the optimum integer- and the fractional-order PID controllers. Extensive simulation and experimental results prove the superiority of the proposed design methodology to achieve a wide set of desired technical goals.

Transient-Performance-Oriented Discrete-Time Design of Resonant Controller for Three-Phase Grid-Connected Converters

  • Song, Zhanfeng;Yu, Yun;Wang, Yaqi;Ma, Xiaohui
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.1000-1010
    • /
    • 2019
  • The use of internal-model-based linear controller, such as resonant controller, is a well-established technique for the current control of grid-connected systems. Attractive properties for resonant controllers include their two-sequence tracking ability, the simple control structure, and the reduced computational burden. However, in the case of continuous-designed resonant controller, the transient performance is inevitably degraded at a low switching frequency. Moreover, available design methods for resonant controller is not able to realize the direct design of transient performances, and the anticipated transient performance is mainly achieved through trial and error. To address these problems, the zero-order-hold (ZOH) characteristic and inherent time delay in digital control systems are considered comprehensively in the design, and a corresponding hold-equivalent discrete model of the grid-connected converter is then established. The relationship between the placement of closed-loop poles and the corresponding transient performance is comprehensively investigated to realize the direct mapping relationship between the control gain and the transient response time. For the benefit of automatic tuning and real-time adaption, analytical expressions for controller gains are derived in detail using the required transient response time and system parameters. Simulation and experimental results demonstrate the validity of the proposed method.

Transonic buffet alleviation on 3D wings: wind tunnel tests and closed-loop control investigations

  • Lepage, Arnaud;Dandois, Julien;Geeraert, Arnaud;Molton, Pascal;Ternoy, Frederic;Dor, Jean Bernard;Coustols, Eric
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.145-167
    • /
    • 2017
  • The presented paper gives an overview of several projects addressing the experimental characterization and control of the buffet phenomenon on 3D turbulent wings in transonic flow conditions. This aerodynamic instability induces strong wall pressure fluctuations and therefore limits flight domain. Consequently, to enlarge the latter but also to provide more flexibility during the design phase, it is interesting to try to delay the buffet onset. This paper summarizes the main investigations leading to the achievement of open and closed-loop buffet control and its experimental demonstration. Several wind tunnel tests campaigns, performed on a 3D half wing/fuselage body, enabled to characterize the buffet aerodynamic instability and to study the efficiency of innovative fluidic control devices designed and manufactured by ONERA. The analysis of the open-loop databases demonstrated the effects on the usual buffet characteristics, especially on the shock location and the separation areas on the wing suction side. Using these results, a closed-loop control methodology based on a quasi-steady approach was defined and several architectures were tested for various parameters such as the input signal, the objective function, the tuning of the feedback gain. All closed-loop methods were implemented on a dSPACE device able to estimate in real time the fluidic actuators command calculated mainly from the unsteady pressure sensors data. The efficiency of delaying the buffet onset or limiting its effects was demonstrated using the quasi-steady closed-loop approach and tested in both research and industrial wind tunnel environments.

A Nonlinear Sliding Mode Controller for IPMSM Drives with an Adaptive Gain Tuning Rule

  • Jung, Jin-Woo;Dang, Dong Quang;Vu, Nga Thi-Thuy;Justo, Jackson John;Do, Ton Duc;Choi, Han Ho;Kim, Tae Heoung
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.753-762
    • /
    • 2015
  • This paper presents a nonlinear sliding mode control (SMC) scheme with a variable damping ratio for interior permanent magnet synchronous motors (IPMSMs). First, a nonlinear sliding surface whose parameters change continuously with time is designed. Actually, the proposed SMC has the ability to reduce the settling time without an overshoot by giving a low damping ratio at the initial time and a high damping ratio as the output reaches the desired setpoint. At the same time, it enables a fast convergence in finite time and eliminates the singularity problem with the upper bound of an uncertain term, which cannot be measured in practice, by using a simple adaptation law. To improve the efficiency of a system in the constant torque region, the control system incorporates the maximum torque per ampere (MTPA) algorithm. The stability of the nonlinear sliding surface is guaranteed by Lyapunov stability theory. Moreover, a simple sliding mode observer is used to estimate the load torque and system uncertainties. The effectiveness of the proposed nonlinear SMC scheme is verified using comparative experimental results of the linear SMC scheme when the speed reference and load torque change under system uncertainties. From these experimental results, the proposed nonlinear SMC method reveals a faster transient response, smaller steady-state speed error, and less sensitivity to system uncertainties than the linear SMC method.

Design of Frequency Synthesizer using Novel Architecture Programmable Frequency Divider (새로운 구조의 프로그램어블 주파수 분주기를 사용한 주파수 합성기 설계)

  • 김태엽;박수양;손상희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.5C
    • /
    • pp.500-505
    • /
    • 2002
  • In this paper, a novel architecture of programmable divider with fifty percent duty cycle output and programmable dividing number has been proposed. Through HSPICE simulation, a 900MHz frequency synthesizer with proposed frequency divider has designed in a standard 0.25$\mu\textrm{m}$ CMOS technology. To verify the operation of proposed frequency divider, a chip had been fabricated using 0.65$\mu\textrm{m}$ 2-poly, 3-metal standard CMOS processing and experimental result shows that the proposed frequency divider works well. The designed voltage controlled oscillator(VCO) has a center frequency of 900MHz, a tuning range of ${\pm}$10%, and a gain of 154MHz/V. The simulated frequency synthesizer performance has a settling time of 1.5${\mu}\textrm{s}$, a frequency range from 820MHz to 1GHz and power consumption of 70mW at 2.5V power supply voltage.

Design of Frequency Synthesizer using Novel Architecture Programmable frequency Divider (새로운 구조의 프로그램어블 주파수 분주기를 사용한 주파수 합성기 설계)

  • 김태엽;박수양;손상희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6C
    • /
    • pp.619-624
    • /
    • 2002
  • In this paper, a novel architecture of programmable divider with fifty percent duty cycle output and programmable dividing number has been proposed. Through HSPICE simulation, a 900MHz frequency synthesizer with proposed (sequency divider has designed in a standard 0.25㎛ CMOS technology To verify the operation of proposed frequency divider, a chip had been fabricated using 0.65㎛ 2-poly, 3-metal standard CMOS processing and experimental result shows that the proposed frequency divider works well. The designed voltage controlled oscillator(VCO) has a center frequency of 900MHz a tuning range of $\pm$10%, and a gain of 154HHz/V. The simulated frequency synthesizer performance has a settling time of 1.5$\mu$s, a frequency range from 820MHz to IGHz and power consumption of 70mW at 2.5V power supply voltage.