• Title/Summary/Keyword: Experimental Portland cement

Search Result 267, Processing Time 0.028 seconds

Basic Properties of Latex-Modified Concrete Using Fly-ash (플라이애쉬를 이용한 라텍스개질 콘크리즈의 기초물성 연구)

  • Hong, Chang-Woo;Jeong, won-Kyong;Kim, Kyong-jin;Yun, Kyong-ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.205-211
    • /
    • 2006
  • The purpose of this study was to evaluate the effects of fly-ash on strength development and durability of latex-modified concrete (LMC) and ordinary portland cement concrete (OPC). Main experimental variables were latex contents (0%, 10%, 15%) and fly-ash content (0, 10%, 20%, 30%). Air content and slump tests were performed to check the basic properties of fresh concretes, and compressive strength, flexural strength, rapid chloride ion permeability and chemical resistance were measured to analyze the basic properties of hardened concretes. The test results showed that air contents of LMC with fly ash decreased as fly-ash contents increased from 0% to 30%. Compressive and flexural strength developments of LMC with fly ash were quite similar to those of LMC without fly ash. However, the long-term flexural strength development of LMC with fly ash after 90 days were bigger than that of LMC without fly ash. Chloride ion permeability and chemical resistance decreased rapidly as the content of fly ash increased. Thus, fly ash could be used at LMC in order to reduce water permeability.

Service life evaluation of HPC with increasing surface chlorides from field data in different sea conditions

  • Jong-Suk Lee;Keun-Hyeok Yang;Yong-Sik Yoon;Jin-Won Nam;Seug-Jun Kwon
    • Advances in concrete construction
    • /
    • v.16 no.3
    • /
    • pp.155-167
    • /
    • 2023
  • The penetrated chloride in concrete has different behavior with mix proportions and local exposure conditions, even in the same environments, so that it is very important to quantify surface chloride contents for durability design. As well known, the surface chloride content which is a key parameter like external loading in structural safety design increases with exposure period. In this study, concrete samples containing OPC (Ordinary Portland Cement), GGBFS (Ground Granulated Blast Furnace Slag), and FA (Fly Ash) had been exposed to submerged, tidal, and splash area for 5 years, then the surface chloride contents changing with exposure period were evaluated. The surface chloride contents were obtained from the chloride profile based on the Fick's 2nd Law, and the regression analysis for them was performed with exponential and square root function. After exposure period of 5 years in submerged and tidal area conditions, the surface chloride content of OPC concrete increased to 6.4 kg/m3 - 7.3 kg/m3, and the surface chloride content of GGBFS concrete was evaluated as 7.3 kg/m3 - 11.5 kg/m3. In the higher replacement ratio of GGBFS, the higher surface chloride contents were evaluated. The surface chloride content in FA concrete showed a range of 6.7 kg/m3 to 9.9 kg/m3, which was the intermediate level of OPC and GGBFS concrete. In the case of splash area, the surface chloride contents in all specimens were from 0.59 kg/m3 to 0.75 kg/m3, which was the lowest of all exposure conditions. Experimental constants available for durability design of chloride ingress were derived through regression analysis over exposure period. In the concrete with GGBFS replacement ratio of 50%, the increase rate of surface chloride contents decreased rapidly as the water to binder ratio increased.

A Study on The Air Pollution Reduction Performance of Mortar Coated with Photocatalyst (광촉매를 코팅한 모르타르의 미세먼지 저감 성능 연구)

  • Seung-Jin Lee;Min-Ki Jeon;Seung-Tae Jeong;In-Hwan Yang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.94-101
    • /
    • 2024
  • In this paper, the performance of air pollution reduction by coating the photocatalyst solution on the mortar surface was analyzed to ensure the possibility of applying the photocatalyst to structures with a large specific surface area. The photocatalytic concentrations of the coating solution were set to 1.5 % and 3.0 %, and the types of binders were considered as experimental variables, such as ultra-high performance concrete (UHPC), ordinary portland cement (OPC), and blast furnace slag. As the photocatalyst concentration increases, the air pollution reduction performance increases. In addition, as a result of the air pollution reduction performance, the NOx concentration reduction rate was the highest for UHPC, and the air pollution reduction performance increased as the blast furnace slag was replaced. Therefore, the amount of TiO2 remaining on the surface varies depending on the density of the tissue due to the difference in particles caused by the difference in the amount of TiO2 remaining on the surface.

Experimental Study on Accelerated Carbonation Characteristics of OPC Paste for CSC-Based Low Carbon Precast Concrete Products (CSC 기반 저탄소 콘크리트 2차제품 제조를 위한 OPC 페이스트의 촉진탄산화 특성에 관한 실험적 연구)

  • Yoon, Jun-Tae;Kim, Young-Jin;Sim, Sang-Rak;Ryu, Dong-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.3
    • /
    • pp.285-295
    • /
    • 2024
  • This study investigated the impact of accelerated carbonation on Ordinary Portland Cement(OPC) paste that had undergone steam curing at 500℃·hr. Two carbonation environments were examined: atmospheric carbonation(1atm, 20% CO2) and pressurized carbonation(5atm, 99% CO2). Chemical analysis using X-ray diffraction(XRD) and Fourier-Transform Infrared spectroscopy(FT-IR) were conducted, along with physical characterization via scanning electron microscopy(SEM) and compressive strength testing. Results indicated that atmospheric carbonation with 20% CO2 concentration significantly densified the internal microstructure of the OPC paste, leading to enhanced compressive strength. Conversely, pressurized carbonation at 5atm with 99% CO2 concentration resulted in rapid densification of the surface structure, which hindered CO2 diffusion into the sample. This limited the extent of carbonation and prevented the improvement of physical properties.

An Experimental Study on Mechanical Properties of Ultra-High Strength Powder Concrete (압축강도 300MPa 이상의 초고강도 분체콘크리트 개발을 위한 실험적 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Park, Jung-Hoon;Kim, Heoun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.287-295
    • /
    • 2010
  • In this study, ordinary Portland cement was used and the air void was minimized by using minute quartz as the filler. In addition, steel fibers were used to mitigate the brittle failure problem associated with high strength concrete. This study is in progress to make an Ultra-high strength powdered concrete (UHSPC) which has compressive strength over 300 MPa. To increase the strength of concrete, we have compared and analyzed the compressive strengths of the concretes with different mix proportions and curing conditions by selecting quartz sand, dolomite, bauxite, ferro silicon which have diameters less than 0.6 mm and can increase the bond strength of the transition zone. Ultra-high strength powdered concrete, which is different from conventional concrete, is highly influenced by the materials in the mix. In the study, the highest compressive strength of the powdered concrete was obtained when it is prepared with ferro silicon, followed in order by Bauxite, Dolomite, and Quartz sand. The amount of ferro silicon, when the highest strength was obtained, was 110%, of the weight of the cement. SEM analysis of the UHSPC showed that significant formation of C-S-H and Tobermorite due to high temperature and pressure curing. Production of Ultrahigh strength powdered concrete which has 28-day compressive strength upto 341MPa has been successfully achieved by the following factors; steel fiber reinforcement, fine particled aggregates, and the filling powder to minimize the void space, and the reactive materials.

An Experimental Study for Improving the Durability of Concrete Bridge Decks (교량 바닥판 콘크리트의 내구성 증진을 위한 실험적 연구)

  • Suh, Jin-Won;Rhee, Ji-Young;Ku, Bon-Sung;Shin, Do-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.393-399
    • /
    • 2007
  • Concrete bridge decks are directly exposed to the severe environmental conditions such as rain water and deicing chemicals resulting in the freeze-thaw action and the rebar corrosion during their service lift. These deteriorations of bridge decks shorten the service lift and consequently they are the major concerns of the maintenance. The high performance concrete (HPC) deck is proposed as the alternative to minimize the deterioration problems. To develop more durable concrete deck, the performance characteristic tests of HPC mixtures were carried out. In this study, 4 different concrete mixtures were used varying the mineral admixtures as the cement replacement; ordinary portland cement (OPC), 20% fly ash (FA),20% fly ash with 4% silica fume (FS), and 40% ground granulated blast-furnace slag (BS). The design compressive strengths of HPC specimens were 27 MPa and 35 MPa, respectively. The results showed that the compressive strength of concrete did not much affect the durability of concrete. HPC with fly ash and silica lune (FS) were turned out to have the good durability and crack resistance.

Evaluation of Flexural Performance of Eco-Friendly Inorganic Binding Material RC Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 무기결합재 철근콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Kim, Jin-Hwan;Jang, Kie-Chang
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.261-269
    • /
    • 2013
  • In this study, it was developed eco-friendly inorganic binding material concrete using ground granulated blast furnace slag and alkali activator (water glass, sodium hydroxides). Eight reinforced concrete beam using inoganic binding material concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, type of admixture and admixture. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The eco-friendly concrete using inorganic binding material encouraged alkali activation reaction was rapidly hardening speed and showed possibility as a high strength concrete. Also, the RC beams using new materials showed similar behavior and failed similarly with RC beam used portland cement. It is thought that eco-friendly inorganic binding material concrete can be used with construction material and product as a basic research to replace cement concrete. If there is application to structures in PC member as well as production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.

Analysis of Microstructure and Thermal Conductivity of Concrete Thermal Energy Storage based on Amount of Graphite Mixture (그라파이트 혼입량에 따른 에너지 저장 콘크리트의 미세구조 및 열전도도 분석)

  • Kim, Se-Yun;Kim, Sung-Jo;Suh, Jeewoo;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.293-300
    • /
    • 2021
  • In this study, the microstructure and thermal conductivity correlation was investigated for concrete materials used in concrete thermal energy storage (CTES) among real-time energy storage devices. Graphite was used as admixture to increase the thermal conductivity performance of the CTES. Concrete specimens of 10% and 15% substitution of cement by mass with graphite, as well as ordinary portland cement (OPC) specimens were prepared, and the microstructural changes and effects on thermal conductivity were analyzed. Porosities of OPC and concrete with graphite were compared using micro-CT, and the microstructural characteristics were quantified using probability functions. Three-dimensional virtual specimens were constructed for thermal analysis, to confirm the effect of microstructural characteristics on thermal conductivity, and the results were compared with the measured conductivity obtained using the hot-disc method. To identify thermal conductivity of graphite for thermal analysis, solid phase conductivity was inversely determined based on simulation and experimental results, and the effect of graphite on thermal conductivity was analyzed.

A Suggestion of Mix, Construction Method and Quality Control Criteria of Fine-size Exposed Aggregate PCC Pavement by Experimental Construction (시험시공을 통한 소입경 골재노출 콘크리트 포장의 배합, 시공 및 품질관리 기준 제안)

  • Lee, Seung-Woo;Kim, Young-Kyu;Choi, Don-Hwa;Shim, Jae-Won;Yoo, Tae-Seok
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.51-63
    • /
    • 2011
  • Surface of fine-size exposed aggregate portland cement concrete pavements(FS-EAPCC) is consist by exposed coarse aggregate to remove upper 2~3mm mortar of concrete slabs. Advantages of FS-EAPCC are maintaining low-noise and adequate skid-resistance level during the performance period. However, FS-EAPCC is required rational management criteria for field application, since it is early stage for application. Design construction and quality control criteria of FS-EAPCC was temporary laboratory tests which including optimum mix and exposing method, selection of adequate aggregate, resistance against, environmental loading and etc. However, these criteria need to be validated base on field application. In this study, experimental constructions were performed and construction procedure and quality control criteria were suggested based on the performance of the FS-EAPCC.

The Prediction of tong-Term Creep Behavior of Recycled PET Polymer Concrete (단기 크리프 실험을 이용한 PET 재활용 폴리머콘크리트의 장기 크리프거동 예측)

  • Jo Byung-Wan;Tae Ghi-Ho;Kim Chul-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.521-528
    • /
    • 2004
  • In general, polymer concrete has more excellent mechanical properties and durability than Portland cement concrete, but very sensitive to heat and has large deformations. In this study, the long-term creep behaviors was predicted by the short-term creep test, and then the characteristic of creep of recycled-PET polymer concrete was defined by material and experimental variables. The error in the predicted long-term creep values is less than 5 percent for all polymer concrete systems. The filler carry out an important role to restrict the creep strains of recycled PET Polymer concrete. The creep strain and specific on using the $CaCO_3$ were less than using fly-ash. The creep increases with an increase in the applied stress, but not proportional the rate of stress increase ratio. The creep behavior of polymer concrete using recycled polyester resin is not a linear viscoelastic behavior.