• Title/Summary/Keyword: Experimental Portland cement

Search Result 265, Processing Time 0.023 seconds

Realistic pore structure of Portland cement paste: experimental study and numerical simulation

  • Ma, Hongyan;Li, Zongjin
    • Computers and Concrete
    • /
    • v.11 no.4
    • /
    • pp.317-336
    • /
    • 2013
  • In this study, the pore structure of Portland cement paste is experimentally characterized by MIP (mercury intrusion porosimetry) and nitrogen adsorption, and simulated by a newly developed status-oriented computer model. Cement pastes with w/c=0.3, 0.4 and 0.5 at ages from 1 day to 120 days are comprehensively investigated. It is found that MIP cannot generate valid pore size distribution curves for cement paste. Nevertheless, nitrogen adsorption can give much more realistic pore size distribution curves of small capillary pores, and these curves follow the same distribution mode. While, large capillary pores can be effectively characterized by the newly developed computer model, and the validity of this model has been proved by BSE imaging plus image analysis. Based on the experimental findings and numerical simulation, a hypothesis is proposed to explain the formation mechanism of the capillary pore system, and the realistic representation of the pore structure of hydrated cement paste is established.

Fundamental Properties of Limestone Powder Added Cement Environment-friendly Concrete for Concrete Pavement (석회석미분말을 함유한 친환경 시멘트콘크리트의 도로포장 적용을 위한 기초 연구)

  • Choi, Woo-Hyeon;Park, Cheol-Woo;Jung, Won-Kyong;Kim, Ki-Heon
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.37-49
    • /
    • 2012
  • PURPOSES : This study is to investigate the fundamental properties of limestone added cement concrete for application of pavement. METHODS : As the production of Portland cement causes environmental problems, engineers have sought more environment-friendly concrete construction materials. Limestone powder can be used for concrete as a partial replacement of Portland cement. One of the great applications of limestone powder added cement concrete might be a cement concrete pavement since the concrete pavement consumes massive quantity of Portland cement. Experimental variables were different replacement level of limestone powder by 0% to 25% with 5% increment. Before hardening of fresh concrete, setting time and plastic shrinkage characteristics were investigated in addition to other basic properties. Properties of hardened concrete included compressive, tensile and flexural strength as well as drying shrinkage. RESULTS : The addition of limestone powder did not significantly affect the properties of fresh concrete. Strength deceased as the replacement ratio increased and when the replacement ratio was greater than 10% decrease rate increased. CONCLUSIONS : It was found that the partial replacement of the limestone powder to cement in pavement materials can be positively considered as its mechanical properties show comparable performance to those normal concrete.

Drying Shrinkage Properties of Latex Modified Concrete (라텍스 개질 콘크리트의 건조수축특성)

  • Yun, Kyong-Ku;Hong, Chang-Woo;Lee, Joo-Hyung
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.301-306
    • /
    • 2001
  • Drying shrinkage cracking which may be caused by the relatively large specific surface is a matter of grave concern for latex modified concrete(LMC) overlay and rapid-setting cement latex modified concrete(RSLMC) overlay. Therefore, the purpose of this dissertation was to study the drying shrinkage properties of LMC and RSLMC with the main experimental variables such as cement types(ordinary portland cement, rapid setting cement), latex contents(0, 5, 10, 15, 20%), W-C ratios, and curing days at a same controlled environment of 60% of relative humidity and $20^{\circ}C$ of temperature. Test results revealed that the drying shrinkage of latex modified concrete(LMC), rapid-setting cement latex modified concrete(RSLMC) was considerably lower than that of ordinary portland cement concrete(OPC), rapid-setting cement concrete(RSC), respectively. This may be attributed to the interlocking of hydrated cement and aggregates by a film of latex particles, water retention due to hydrophobic and colloidal properties of the latexes, resulting in reduced water evaporation.

  • PDF

Effect of cement stabilization on geotechnical properties of sandy soils

  • Shooshpasha, Issa;Shirvani, Reza Alijani
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.17-31
    • /
    • 2015
  • An experimental program was performed to study the effects of cement stabilization on the geotechnical characteristics of sandy soils. Stabilizing agent included lime Portland cement, and was added in percentages of 2.5, 5 and 7.5% by dry weight of the soils. An analysis of the mechanical behavior of the soil is performed from the interpretation of results from unconfined compression tests and direct shear tests. Cylindrical and cube samples were prepared at optimum moisture content and maximum dry unit weight for unconfined compression and direct shear tests, respectively. Samples were cured for 7, 14 and 28 days after which they were tested. Based on the experimental investigations, the utilization of cemented specimens increased strength parameters, reduced displacement at failure, and changed soil behavior to a noticeable brittle behavior.

Experimental Approach on Sulfate Attack Mechanism of Ordinary Portland Cement Matrix: Part I. Sodium Sulfate Attack

  • Moon Han-Young;Lee Seung-Tae;Kim Jong-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.557-564
    • /
    • 2004
  • This paper introduces a study carried out to investigate sodium sulfate attack caused by various reactive products. Experiments were performed on mortar and paste specimens made with ordinary Portland cement (OPC) conforming to KS L 5201 Type I. The water-cement ratios were varied from 0.35 to 0.55. It was found from the laboratory study that the water-cement ratio may be a key to control the deterioration of OPC matrix during sodium sulfate attack. Furthermore, X-ray diffraction (XRD) confirmed that ettringite, gypsum and thaumasite were the main products formed by sodium sulfate attack. These findings were well supported by thermal analysis through differential scanning calorimetry (DSC), and confirmed the long-term understanding that deterioration mechanism by sodium sulfate attack is a complicated process. Most importantly, deterioration due to sodium sulfate attack is characterized as the drastic reduction in compressive strength as well as the expansion (especially in cement matrix with a higher water-cement ratio).

Strength and chloride penetration of Portland cement mortar containing palm oil fuel ash and ground river sand

  • Rukzon, Sumrerng;Chindaprasirt, Prinya
    • Computers and Concrete
    • /
    • v.6 no.5
    • /
    • pp.391-401
    • /
    • 2009
  • This paper presents a study of the strength and chloride penetration of blended Portland cement mortar containing ground palm oil fuel ash (POA) and ground river sand (GS). Ordinary Portland cement (OPC) was partially replaced with POA and GS. Compressive strength, rapid chloride penetration test (RCPT) and chloride penetration depth of mortars were determined. The GS only asserted the packing effect and its incorporation reduced the strength and the resistance to chloride penetration of mortar. The POA asserted both packing and pozzolanic effects. The use of the blend of equal portion of POA and GS also produced high strength mortars, save cost and excellent resistance to chloride penetration owing to the synergic effect of the blend of POA and GS. For chloride depth, the mathematical model correlates well with the experimental results. The computer graphics of chloride depth of the ternary blended mortars are also constructed and can be used to aid the understanding and the proportioning of the blended system.

A Basical Study on the Preparing of Container Used for Treatment and Disposal of Low-and Intermediate-Level Radioactive Wastes(I) (저.중준위 방사성 폐기물의 고화처리 및 처분용 용기 개발을 위한 기초연구(1))

  • 홍원표;정수영;황의환;조헌영;김철규
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.2
    • /
    • pp.101-110
    • /
    • 1988
  • In order to improve the physical properties of concrete used for treatment and disposal container of low-and intermediate-level radioactive wastes, OPC (ordinary portland cement), ACPC (asphalt coated portland cement) and EPC(epoxy-portland cement) concrete specimens were prepared, and the physical properties of each concrete specimen were tested. According to the experimental results, EPC concrete showed better physical properties than ACPC and OPC concrete, however, ACPC concrete proved to be a best material for treatment and disposal container of radwastes in view of economic aspect and physical properties.

  • PDF

An Experimental Study on Nondestructive Properties of Crushed Oyster Shell Concrete (패분 콘크리트의비파괴 특성에 관한 실험적 연구)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.2
    • /
    • pp.93-98
    • /
    • 2000
  • This study is performed to evalute experimentally the nondestructive properties on the concrete that is treated with crushed oyster shell powder of 0.15m or smaller in diameter. The ultrsonic pulse velocity of crushed oyster shell concrete(COSC) is in the range of 4.110-4.267m/s, and the dynamic modulus of elasticity of COSC range from 288$\times$10$^3$ to 318 $\times$10$^3$kgf/$\textrm{cm}^2$. The ultrasonic pulse velocity and dynamic modulus of elasticity are similar to those of normal portland cement concrete. The highest ultrasonic pulse velocity and dynamic modulus of COSC are measured at the 2.5% addition rate by weight of crushed oyster shell powder. The acid-resistance in increased of the content of crushed oyster shell powder. The acid-resistance of COSC with 15% addition rate by weight of crushed oyster shell power is 1.6 times greater than that of normal portland cement concrete. It is concluded that the addition of crushed oyster shell powder to normal portland cement concrete contributed to improve the nondestructive properties of concrete.

  • PDF

Properties of Reinforced Concrete Used for Disposal Container of Low-and Intermediate-level Radioactive Wastes (중.저준위 방사성 폐기물 처분용기용 보강 콘크리트의 특성)

  • 황의환;황선태;홍원표;조헌영
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.455-464
    • /
    • 1988
  • Concrete used for radwaste container should have excellent properties such as mechanical strength, water-tightness, durability, etc. In order to improve such properties of ordinary portland cement concrete, superplasticizer, steel fiber, and/or epoxy resin were added to ordinary portland cement concrete respectively. Various concrete specimens were prepared and the physical properties of each concrete specimen were tested. From the experimental results, the properties of steel fiber and epoxy resin reinforced concrete were proved to be better qualified than others for low-and intermediate-level radwaste container.

  • PDF

The Effect of Meta-Kaolin Replacement on Alkali-Silica Reaction (메타카올린 치환에 따른 알칼리-실리카 반응 팽창 저감효과)

  • Jun Ssang Sun;Lee Hyomin;Jin Chi Sub;Hwang Jin Yeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.360-363
    • /
    • 2004
  • The effectiveness of Meta-Kaolin to prevent detrimental expansion due to alkali-silica reaction was investigated through the ASTM C 1260 method. Reactive aggregate used is a metamorphic rock. The replacement proportions of portland cement by Meta-Kaolin were 0, 5, 10, 15, 25 and 35 percent, respectively. The results indicate that 25 percent replacement of portland cement by Meta-Kaolin seems to be most effective to reduce alkali-silica reaction expansion under this experimental conditions.

  • PDF