• 제목/요약/키워드: Experimental Model

검색결과 19,144건 처리시간 0.046초

A new statistical approach for joint shear strength determination of RC beam-column connections subjected to lateral earthquake loading

  • Kim, Jaehong;LaFavet, James M.;Song, Junho
    • Structural Engineering and Mechanics
    • /
    • 제27권4호
    • /
    • pp.439-456
    • /
    • 2007
  • Reinforced concrete (RC) joint shear strength models are constructed using an experimental database in conjunction with a Bayesian parameter estimation method. The experimental database consists of RC beam-column connection test subassemblies that maintained proper confinement within the joint panel. All included test subassemblies were subjected to quasi-static cyclic lateral loading and eventually experienced joint shear failure (either in conjunction with or without yielding of beam reinforcement); subassemblies with out-of-plane members and/or eccentricity between the beam(s) and the column are not included in this study. Three types of joint shear strength models are developed. The first model considers all possible influence parameters on joint shear strength. The second model contains those parameters left after a step-wise process that systematically identifies and removes the least important parameters affecting RC joint shear strength. The third model simplifies the second model for convenient application in practical design. All three models are unbiased and show similar levels of scatter. Finally, the improved performance of the simplified model for design is identified by comparison with the current ACI 352R-02 RC joint shear strength model.

Distributed plasticity approach for nonlinear analysis of nuclear power plant equipment: Experimental and numerical studies

  • Tran, Thanh-Tuan;Salman, Kashif;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.3100-3111
    • /
    • 2021
  • Numerical modeling for the safety-related equipment used in a nuclear power plant (i.e., cabinet facilities) plays an essential role in seismic risk assessment. A full finite element model is often time-consuming for nonlinear time history analysis due to its computational modeling complexity. Thus, this study aims to generate a simplified model that can capture the nonlinear behavior of the electrical cabinet. Accordingly, the distributed plasticity approach was utilized to examine the stiffness-degradation effect caused by the local buckling of the structure. The inherent dynamic characteristics of the numerical model were validated against the experimental test. The outcomes indicate that the proposed model can adequately represent the significant behavior of the structure, and it is preferred in practice to perform the nonlinear analysis of the cabinet. Further investigations were carried out to evaluate the seismic behavior of the cabinet under the influence of the constitutive law of material models. Three available models in OpenSees (i.e., linear, bilinear, and Giuffre-Menegotto-Pinto (GMP) model) were considered to provide an enhanced understating of the seismic responses of the cabinet. It was found that the material nonlinearity, which is the function of its smoothness, is the most effective parameter for the structural analysis of the cabinet. Also, it showed that implementing nonlinear models reduces the seismic response of the cabinet considerably in comparison with the linear model.

Shear strength model for reinforced concrete beam-column joints based on hybrid approach

  • Parate, Kanak N.;Kumar, Ratnesh
    • Computers and Concrete
    • /
    • 제23권6호
    • /
    • pp.377-398
    • /
    • 2019
  • Behavior of RC beam-column joint is very complex as the composite material behaves differently in elastic and inelastic range. The approaches generally used for predicting joint shear strength are either based on theoretical, strut-and-tie or empirical methods. These approaches are incapable of predicting the accurate response of the joint for entire range of loading. In the present study a new generalized RC beam-column joint shear strength model based on hybrid approach i.e. combined strut-and-tie and empirical approach has been proposed. The contribution of governing parameters affecting the joint shear strength under compression has been derived from compressive strut approach whereas; the governing parameters active under tension has been extracted from empirical approach. The proposed model is applicable for various conditions such as, joints reinforced either with or without shear reinforcement, joints with wide beam or wide column, joints with transverse beams and slab, joints reinforced with X-bars, different anchorage of beam bar, and column subjected to various axial loading conditions. The joint shear strength prediction of the proposed model has been compared with 435 experimental results and with eleven popular models from literature. In comparison to other eleven models the prediction of the proposed model is found closest to the experimental results. Moreover, from statistical analysis of the results, the proposed model has the least coefficient of variation. The proposed model is simple in application and can be effectively used by designers.

직사각형 공동 내부 자연연대류 문제에 대한 k-epsilon-vv-f 난류모델의 평가 (Evaluation of the K-Epsilon-VV-F Turbulence Model for Natural Convection in a Rectangular Cavity)

  • 최석기;김성오;김의광;최훈기
    • 한국전산유체공학회지
    • /
    • 제7권4호
    • /
    • pp.8-18
    • /
    • 2002
  • The primary objective of the present study is evaluation of the k-ε-vv-f turbulence model for prediction of natural convection in a rectangular cavity. As a comparative study, the two-layer k-ε model is also considered. Both models, with and without algebraic heat flux model, are applied to the analysis of natural convection in a rectangular cavity. The performances of turbulence models are investigated through comparison with available experimental data. The predicted results of vertical velocity component, turbulent heat fluxes, turbulent shear stress, local Nusselt number and wall shear stress are compared with experimental data. It is shown that, among the turbulence models considered in the present study, the k-ε-vv-f model with an algebraic heat flux model predicts best the vertical mean velocity and velocity fluctuation, and the inclusion of algebraic heat flux model slightly improves the accuracy of results.

스파크 점화기관의 난류 화염전파모델에 관한 연구 (A Study on Turbulent Flame Propagation Model of S. I. Engines)

  • 유욱재;최인용;전광민
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2787-2796
    • /
    • 1994
  • The modeling of combustion process is an important part in an engine simulation program. In this study, calculated results using a conventional B-K model and the other model which is called GESIM were compared with experimentally measured data of a three-cylinder spark-ignition engine under wide range of operating conditions. The burn rates calculated from the combustion models were compared with the burn rate calculated from the one-zone heat release analysis that uses measured pressure data as an input data. As a result of the two models' comparison, the GESIM combustion model conformed to be closer to the data acquired from the experiment in wide operating ranges. The GESIM model has been improved by introducing a variable that considers the flame size, the area of flame conacting the piston surface into the model, based on the comparison between the experimental result and the calculated results. The improved combustion model predicts experimental results more precisely than that of GESIM combustion model.

직접분사식 디젤엔진에서의 분무충돌과 연료액막형성 해석 (Simulation of Spray Impingement and Fuel Film Formation in a Direct Injection Diesel Engine)

  • 김만식;민경덕;강보선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.919-924
    • /
    • 2000
  • Spray impingement model and fuel film formation model were developed and incorporated into the computational fluid dynamics code, STAR-CD. The spray/wall interaction process were modelled by considering the change of behaviour with surface temperature condition and fuel film formation. We divided behaviour of fuel droplets after impingement into stick, rebound and splash using Weber number and parameter K. Spray impingement model accounts for mass conservation, energy conservation and heat transfer to the impinging droplets. A fuel film formation model was developed by Integrating the continuity, the Navier-Stokes and the energy equations along the direction of fuel film thickness. The validation of the model was conducted using diesel spray experimental data and gasoline spray impingement experiment. In all cases, the prediction compared reasonably well with experimental results. Spray impingement model and fuel film formation model have been applied to a direct injection diesel engine combustion chamber.

  • PDF

A General Radar Scattering Model for Earth Surfaces

  • Jung, Goo-Jun;Lee, Sung-Hwa;Oh, Yi-Sok
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.41-43
    • /
    • 2003
  • A radar scattering model is developed based on an empirical rough surface scattering model, the radiative transfer model (RTM), a numerical simulation algorithm of radar scattering from particles, and experimental data obtained by ground-based scatterometers and SAR systems. At first, the scattering matrices of scattering particles such as a leaf, a branch, and a trunk, have been modeled using the physical optics (PO) model and the numerical full-wave analysis. Then, radar scattering from a group of mixed particles has been modeled using the RTM, which leads to a general scattering model for earth surfaces. Finally, the scattering model has been verified with the experimental data obtained by scatterometers and SAR systems.

  • PDF

프랜차이즈 브랜드에서 모델의 매력성 및 적합성이 브랜드 태도와 구매의도에 미치는 영향 (The Influence of Attractiveness and Match-Up of Model on Brand Attitude and Purchase Intention of Franchise Brands)

  • 안병옥;허정무;이동한
    • 한국프랜차이즈경영연구
    • /
    • 제8권4호
    • /
    • pp.7-19
    • /
    • 2017
  • Purpose - The purpose of this study is to investigate the effect of model attractiveness on brand attitude and purchase intention, and examine whether product-model match-up plays a moderating role in the relationship between model attractiveness and brand attitude and purchase intention. The model attractiveness is consist of psychological and physical attractiveness of the model. The authors investigate how product-model match-up influence the strength of the relationship between model attractiveness - brand attitude and purchase intention. The purpose of this is to test whether product-model match-up influence the form and effectiveness of a model attractiveness on brand attitude and purchase intention and suggest the effective and efficient methods in the model selection strategies to increase advertising effectiveness based on the results of this study. Research design, data, and methodology - The experimental design for this study was the between subject design based on 2 group of the psychological attractiveness(high vs. low) × product-model match-up(high vs low) and 2 group of the physical attractiveness(high vs. low) × product-model match-up(high vs low). And a preliminary investigation was conducted to develop experimental stimuli through manipulation check to enhance the external validity of experimental research. The attractiveness of the model and product-model match-up are independent variables and manipulative variables in presentation of experimental stimuli. The self-administered methode experiment was conducted on 300 subjects in four groups constructed according to the independent variables. Result - The findings provide partial support for a moderator for product-model match-up on the model attractiveness - brand attitude and purchase intention. First, the influence of psychological attractiveness and physical attractiveness on brand attitude and purchase intention was shown significant. Also, it was found that the average value of brand attitude and purchase intention according to psychological attractiveness was significantly higher than the average value of brand attitude and purchase intention according to physical attractiveness in additional analysis. Second, the average value of brand attitude and purchase intention were higher when product - model match-up was high in both high and low psychological attractiveness and physical attractiveness of the model. However, in the case of psychological attractiveness, the correlation effect with product - model match-up was significant, but in the case of physical attractiveness, it was not significant. Conclusions - The results of this study suggest that the attractiveness factor should be considered in selecting the ad model by verifying the effect of the attractiveness of the model on the advertising effect. In particular, this study has great significance both academically and practically in terms of suggesting such implications that the advertising effect of psychological attractiveness and physical attractiveness may be different depending on the product type by additional analysis.

Full-scale 실험 모드해석을 이용한 노후화된 철도판형교의 진동특성 (Vibrational Characteristics of the Deteriorated Railway Plate Girder Bridge by Full-scale Experimental Modal Analysis)

  • 김주우;정희영
    • 한국강구조학회 논문집
    • /
    • 제24권1호
    • /
    • pp.119-128
    • /
    • 2012
  • 본 연구에서는 실험적 모드해석 기법을 이용하여 외부환경에 직접 노출되어 있는 실제 철도판형교의 full-scale 동적 테스트가 수행되었다. 충격해머 모드실험에 의해 얻어진 철도판형교의 모드 매개변수를 유한요소해석으로부터 구한 고유진동수와 모드형상과 비교, 분석하였다. 실험적 모드해석에 의해 측정된 실험 데이터와 해석적 진동분석에서 얻어지는 출력만의 데이터를 교량 부재의 기하학적 특성 및 재료적 특성을 다양하게 고려하여 모델보정 테크닉에 적용하였다. 철도판형교의 실험적 모드해석 결과를 검증하기 위한 유한요소모델이 모드인식 기법을 이용하여 보정되었다. 실험 데이터와 유한요소해석 기준모델의 모델보정과정의 결과와 함께 부재특성의 변화를 통하여 이루질 수 있는 손상평가에 대한 기초적 데이터베이스가 제공된다.

Pier Scour Prediction in Pressure Flow

  • Choi, Gye-Woon;Ahn, Sang-Jin;Kim, Jong-Sup
    • Korean Journal of Hydrosciences
    • /
    • 제6권
    • /
    • pp.23-37
    • /
    • 1995
  • In this experimental paper, the maximum scour depth at pier was student. The model of the pier of San Gye bridge in the Bocheong stream was set for the experimental studies. Several model verification processes were conducted through the roughness comparisons between model and prototype, pursuing scour depth variations with time depending upon channel bed variation, the comparison of the ratios between falling velocities and shear velocities in the model and prototype, and the comparison of pier scour depths between experimental data and field measuring data. The experiments were conducted in the free flow conditions and pressure flow conditions. The maximum scour depth at piers in the pressure flow conditions is almost twice as much as compared to the free flow conditions. Also, the maximum scour depth variations are indicated in the figures based on the Froude numbers, opening ratios, water depths and approaching angles in the free surface flow conditions.

  • PDF