• Title/Summary/Keyword: Experimental Investigation

Search Result 4,366, Processing Time 0.048 seconds

Experimental Investigation on Dielectric and Thermal Characteristics of Nanosized Alumina Filler Added Polyimide Enamel

  • Sugumaran, C. Pugazhendhi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.978-983
    • /
    • 2014
  • The polymer nano composite possess good priority recently for engineering applications. Especially the electrical insulating materials attract the high performance of nano composites. In this work the ballmill synthesiation process of nano sized Alumina ($Al_2O_3$), the preparation of new nano composite material with an content of enamel and synthesized Alumina as 1wt%, 3wt% and 5wt%. Experimental investigation has been carried out for the prepared nano composites materials with respect to dielectric parameter measurements such as dielectric loss (tan ${\delta}$), dielectric constant (${\varepsilon}$), dielectric strength under various temperature. The partial discharge level also measured for all the samples and the PD inception voltage is also observed and compared. Weight loss of the material has been analyzed through TGA. It has been experimentally proved that 3wt% of Alumina nano filler added enamel has significant improvement in the dielectric and thermal properties.

Experimental Studies on Risks of BB Pellets Using Gelatine Based Simulants (젤라틴 Simulant를 이용한 비비탄총 탄환의 위험성에 관한 실험적 연구)

  • Park, Dal-Jae;Kim, Hyung-Suk;Lee, Young-Soon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.29-33
    • /
    • 2011
  • Experimental studies were performed to investigate the injury potential of BB pellets through gelatine based simulants. In order to record BB pellet movements penetrating into the target simulant, a high-speed video camera was used. In this study the first investigation involved the effects on concentrations, homogeneity and gelation times of the gelatine simulant. The second investigation involved the penetration depth of the pellets to the simulant by different distances between the BB gun and the simulant. The final one is associated with impact velocity, threshold velocity and penetration depth of the pellets by different kinetic energies of the BB gun. Results provided the basis in assessing the injury potential of BB pellets.

Application of Hilbert-Huang transform for evaluation of vibration characteristics of plastic pipes using piezoelectric sensors

  • Cheraghi, N.;Riley, M.J.;Taherit, F.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.6
    • /
    • pp.653-674
    • /
    • 2007
  • This paper discusses the application of piezoelectric sensors used for evaluation of damping ratio of PVC plastics. The development of the mathematical formulation based on the Empirical Mode Decomposition for calculating the damping coefficient and natural frequency of the system is presented. A systematic experimental and analytical investigation was also carried out to demonstrate the integrity of several methods commonly used to evaluate the damping of materials based on a single degree freedom formulation. The influence of the sensors' location was also investigated. Besides the commonly used methods, a newly emerging time-frequency method, namely the Empirical Mode decomposition, is also employed. Mathematical formulations based on the Hilbert-Huang formulation, and a frequency spacing technique were also developed for establishing the natural frequency and damping ratio based on the output voltage of a single piezoelectric sensor. An experimental investigation was also conducted and the results were compared and verified with Finite Element Analysis (FEA), revealing good agreement.

Mechanical behavior of outer square inner circular concrete-filled dual steel tubular stub columns

  • Ding, Fa-xing;Wang, Wenjun;Liu, Xue-mei;Wang, Liping;Sun, Yi
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.305-317
    • /
    • 2021
  • The mechanical behavior of the outer square inner circular concrete-filled dual steel tubular (SCCFT) stub columns under axial compression is investigated by means of experimental research, numerical analysis and theoretical investigation. Parameters such as diameter ratio, concrete strength and steel ratio were discussed to identify their influence on the mechanical properties of SCCFT short columns on the basis of the experimental investigation of seven SCCFT short columns. By establishing a finite element model, nonlinear analysis was performed to discuss the longitudinal and transverse stress of the dual steel tubes. The longitudinal stress characteristics of the core and sandwich concrete were also analyzed. Furthermore, the failure sequence was illustrated and the reasonable cross-section composition of SCCFT stub column was proposed. A formula to predict the axial load capacity of SCCFT stub column was advanced and verified by the results from experiment and the finite element.