• 제목/요약/키워드: Experiment-Model-Design

검색결과 1,594건 처리시간 0.037초

타이어 설계인자를 고려한 자동차 현가계의 진동특성 (Vibration Characteristics of Automobile Suspension System considering Tire Design Parameters)

  • 이태근;김병삼
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.805-810
    • /
    • 2004
  • The model is verified thorough simulations and experiments. And then the developed model is applied to a half car model and automobile vibrations are analyzed. The effects of tire design parameters on the automobile vibration energy are investigated. The results from laboratory and field tests confirm the validity of the analytical model. The 17-DOF half-car model is built to analyze the automobile vibration. The characteristics of the nonlinear model for a shock absorber are applied to this model. The results from the present 17-DOF half car model incorporating the analytical tire model with tire design parameters, are compared with a 5-DOF half car model where the tire is modeled with linear springs. The results of the 17-DOF model are closed to experimental results. Using the 17-DOF model, the influences of tire design parameter are considered. According to the results of analyses, the vibrations at seat/body/wheel are predicted by simulation and experiment.

  • PDF

컴퓨터 응용기술(CAE)을 이용한 기기특성의 유추해석과 계열화 설계 (Systematization design and the analogical interpretation of machinery character by use CAE)

  • 조경재;조제황;이권현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.851-856
    • /
    • 1996
  • In this paper, we introduce the design method using CAE(Computer Aided Engineering) which is profitable in the compatability and standardization of the developed product, and the reduction of construction time and price to develop and design a machine equipment. Particularly, we select the standard model to design or develop from the large machinery to the super precision one, extract the peculiar characters of the model by the close analysis of the physical and technical part, the experiment for the characteristics of objective dimensions by analogical mathematical analysis for previous results, and can induce the design model demanded by user investigating optimal data in the design previous We present the analogical algorithms and process method of design factors and restriction factors in the systematization design with computer. Then we analyze step functions for each systematization equipment and induce the process of technical data with actuator model.

  • PDF

선반작업에서 실험계획법을 이용한 표면 거칠기에 관한 연구 (A Study on the Surface Roughness Using the Design of Experiment in Turning Process)

  • 홍민성
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.519-524
    • /
    • 2000
  • This paper presents a study of surface roughness prediction model by experimental design in turning operation. Regression analysis technique has been used to study the effects of the cutting parameters such as cutting speed, feed and depth of cut on surface roughness. The experiment has been conducted using coated tungsten carbide inserts without cutting fluid. The reliability of the surface roughness model as a function of the cutting parameters has been estimated. The results show that the experimental design used in cutting process is a method to estimate the effects of cutting parameter on surface roughness.

  • PDF

실험계획법을 이용한 전자부품 위치정렬장치 최적 운영조건 사례연구 (A Study on Optimal Operation Conditions for an Electronic Device Alignment System by Using Design of Experiments)

  • 이동헌;이미림;배석주
    • 품질경영학회지
    • /
    • 제43권3호
    • /
    • pp.453-466
    • /
    • 2015
  • Purpose: The purpose of this study is to design a systematic method to estimate optimal operation conditions of design variables for an electronic device alignment system. Method: The 2-level factorial design and the central composite design are used in order to plan experiments. Based on the experiment results, a regression model is established to find optimal conditions for the design variables. Results: 3 of 5 design variables are selected as major factors that affect the alignment system significantly. The optimized condition for each variable is estimated by using a sequential experiment plan and a quadratic regression model. Conclusion: The method designed in this study provides an efficient and systematic plan to select the optimized operation condition for the design variables. The method is expected to improve inspection accuracy of the system and reduce the development cost and period.

Systematization Design of Linear Actuator by using CAE System

  • Cho, Kyeng-Jai;Cha, In-Su;Lee, Kwon-Hyun
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.107-112
    • /
    • 1998
  • In this paper, we introduce the design method using CAE(Computer Aided Engineering) which is profitable in the compatibility and standardization of the developed product, and the reduction of construction time and price to develop and design a machine equipment. Particularly, we select the standard model to design or develop from the large machinery to the super precision one, extract the peculiar characters of the model by the close analysis on the physical and technical part, the experiment for the characteristics of objective dimensions by analogical mathematical analysis for previous results, and can induce the design model demanded by user investigating optimal data in the design previous. We present the analogical algorithms and process method of design factors and restriction factors in the systematization design with computer. Then we analyze step functions for each systematization equipment and induce the process of technical data with actuator model.

  • PDF

WEDG 방법을 이용한 마이크로 구조물 가공용 미세공구 제작 (Fabrication of Micro Tool Electrode for Machining Micro Structures using Wire Electrical Discharge Grinding(WEDG))

  • 박성준;안현민;이교승
    • 한국공작기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.13-20
    • /
    • 2005
  • Micro EDM process is generally used for machining microholes, cavities, and three dimensional shapes. For machining micro structures, first of all, micro tool electrode is indispensable and WEDG system is proposed for tool fabrication method. When using WEDG, its machining characteristics are highly affected by many EDM parameters such as applied voltage, current, rotation speed, capacitance, and pulse duration. Therefore, the design of experiment is introduced to fully understand the effect of the EDM parameters on machining tool electrode. And an attempt has been made to develop the mathematical model for predicting the size of the tool electrode by calculating spark distance. The suggested model was verified with experiment and predicted working gap distance is in good accord with the measured value.

Identification and Control of Model Helicopter in Hovering

  • Park, Duckgee;Yang, Dong-Hoon;Park, Moon-Soo;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.63.2-63
    • /
    • 2002
  • ● Introduction ● System Identification ● PD Controller Design ● Verifying the Model & Simulation ● Experiment for Attitude Control ● Results ● Conculsions

  • PDF

Seismic analysis of bridges based on stress-dependent damping

  • Su, Li;Wang, Yuanfeng;Li, Pengfei;Mei, Shengqi;Guo, Kun
    • Structural Engineering and Mechanics
    • /
    • 제62권3호
    • /
    • pp.281-289
    • /
    • 2017
  • Damping value has considerable influence on the dynamic and seismic behaviors of bridges. However, currently the constant damping ratios that are prescribed by most bridge seismic design codes can't truly represent the complicated damping character of actual structures. In this paper, a cyclic loading experiment was conducted to study the effect of stress amplitude on material damping of concrete to present an analyzing model of the material damping of concrete. Furthermore, based on the fundamental damping of structure measured under ambient vibration, combined with the presented stress-dependent material damping concrete, the seismic response of a bridge pier was calculated. Comparison between the calculated and experiment results verified the validity of the presented damping model. Finally, a modified design and analysis method for bridge was proposed based on stress-dependent damping theory, and a continuous rigid frame bridge was selected as the example to calculate the actual damping values and the dynamic response of the bridge under different earthquake intensities. The calculation results indicated that using the constant damping given by the Chinese seismic design code of bridges would overestimate the energy dissipation capacity of the bridge.

원자력발전소 안전성 평가 향상을 위한 물 자연대류 검증 실험 (Experiment on water turbulent natural convection for safety improvement of nuclear power plant)

  • 김동혁;류나영;김만배;박창용;김정우
    • 한국가시화정보학회지
    • /
    • 제14권3호
    • /
    • pp.46-50
    • /
    • 2016
  • The objective of the present study is to perform experiments for water filled cavity heated and cooled from the side at $Ra=8.5{\times}108$. This experiment can provide validation database of the standard k-${\varepsilon}$ turbulence model for single-phase turbulent natural convection which has been regarded as one of the important phenomena in nuclear safety. For the natural convection inside a cavity, temperature and velocity were obtained by thermometry and PIV (Particle Image Velocimetry) methods. These results would be used for validation of standard k-${\varepsilon}$ turbulence model.

경중량 수직형 충격 시험 장비의 선형 동역학 모델 수립을 통한 충격 시험 설계 기법에 관한 연구 (A Study on Shock Test Design Method Using Linear Dynamic Model of Light Weight Vertical Shock Test Machine)

  • 김준혁;오부진;임담혁
    • 한국군사과학기술학회지
    • /
    • 제24권1호
    • /
    • pp.70-78
    • /
    • 2021
  • Naval surface ships and submarines could be exposed to non-contact underwater explosion(UNDEX) environment. Equipment installed on the ships and submarines could be damaged by shock load generated by UNDEX environment. Therefore, shock survivability of equipment generally evaluated by shock tests. Ground based shock test machine such as Light weight shock test machine(LVSM) is developed to simulate shock load caused by UNDEX environment. In this study, linear dynamic model of LVSM is proposed and evaluated to improve shock test design procedure. Parameters of the model are decided by optimizing time domain response compared to zero payload experiment. Proposed model is verified by comparing simulation results and test results of maximum payload experiment. Finally, shock test design using the model is described for various test equipment weight.