• Title/Summary/Keyword: Expected efficiency

Search Result 2,942, Processing Time 0.031 seconds

A Development of Evaluation Indicators for Performance Improvement of Horticultural Therapy Garden (원예치료정원의 성능개선을 위한 평가지표 개발)

  • Ahn, Je-Jun;Park, Yool-Jin
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.113-123
    • /
    • 2018
  • The purpose of this research is to develop evaluation indicators forperformance improvement of horticultural therapy garden. In order to achieve a therapeutic purpose, the gardening activity held by the trained horticultural therapist. Moreover, horticultural therapy is 'a medical model' for the treatment and basic premise of the research was set, as horticultural therapy garden is characterized area to support activities of patients and horticultural therapist functionally and efficiently. For this study, three times of Delphi and AHP techniques were proceeded to export panels who were recruited by purposive sampling. Through these techniques, it was possible to deduct the evaluation indicator which maximizes the performance of the horticultural therapy garden. The evaluation items were prioritized by typing and stratification of the indicator. The results and discussions were stated as followings. Firstly, a questionnaire of experts was conducted to horticultural therapists and civil servants who were in charge of horticultural therapy. As results(horticultural therapists: 87.8%, civil servants: 75.2%), It is possible to conclude that both positions have the high recognition and agreed on the necessity of horticultural therapy. Secondly, Delphi investigation was conducted three times in order to develop the evaluation indicator for performance evaluation. After Delphi analysis, total 34 of evaluation elements to improve the performance of the horticultural therapy garden by reliability and validity analysis results. Thirdly, AHP analysis of each evaluation indicator was conducted on the relative importance and weighting. Moreover, the results showed 'interaction between nature and human' as the most important element, and in order of 'plan of the program', 'social interaction', 'sustainable environmental', and 'universal design rule', respectively. On the other hand, the exports from the university and research institute evaluated the importance of 'interaction between nature and human', while horticultural therapists chose 'plan of the program' as the most important element. Fourthly, the total weight was used to develop weight applied evaluation indicator for the performance evaluation of the horticultural therapy garden. The weight applying to evaluation index is generally calculated multiply the evaluation scores and the total weight using AHP analysis. Finally, 'the evaluation indicator and evaluation score sheet for performance improvement of the horticultural therapy garden' was finally stated based on the relative order of priority between evaluation indicators and analyzing the weight. If it was deducted the improvement points for the efficiency of already established horticultural therapy garden using the 'weight applied evaluation sheet', it is possible to expand it by judging the importance with the decision of the priority because the item importance decided by experts was reflected. Moreover, in the condition of new garden establishment, it is expected to be helpful in suggesting ways for performance improvement and in setting the guidelines by understanding the major indicators of performance improvement in horticultural therapy activity.

Characterization of Repeated Deactivation and Subsequent Re-activation of Photocatalyst Used in Two Alternatively-operating UV/photocatalytic Reactors of Waste-air Treating System (교대로 운전되는 두 개의 UV/광촉매반응기로 구성된 폐가스 처리시스템에서의 광촉매의 비활성화 및 재생 특성)

  • Lee, Eun Ju;Chung, Chan Hong;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.584-595
    • /
    • 2021
  • In this study, the correlation between operating stages of waste air-treating system composed of two alternatively-operating UV/photocatalytic reactors, and the deactivation of photocatalyst used in each operating stage, was investigated by instrumental analysis thereon. The repeated deactivation and subsequent re-generation of photocatalyst used in the waste air treating system of previous investigation performed by Lee and Lim (Korean Chem. Eng. Research, 59(4), 574-583(2021)), were characterized on virgin photocatalyst-carrying porous SiO2 media (A4), used photocatalyst-carrying porous SiO2 media (A1, A2 and A3) collected from the corresponding photocatalytic reactor upon 1st, 2nd, and 3rd run, respectively, regenerated photocatalyst-carrying porous SiO2 media upon 1 time-run (AD1) and 3 times regenerated photocatalyst-carrying porous SiO2 media upon 3 time-runs (AD3) by instrumental analysis including BET analysis, SEM, XPS, SEM-EDS and FT-IR. As a result, the proper regeneration-temperature for deactivated photocatalyst to be regenerated several times (more than 3 times), was suggested below 200 ℃. Such temperature of deactivated photocatalyst-regeneration was almost consistent to the one, according to BET analysis, at which tiny nano-pores blocked by adsorbed ethanol-oxidative and degraded intermediates (AEODI), were regenerated to be reopened through almost complete mineralization of AEODI. In particular, the results of XPS analysis indicated an incurrence of insignificant deactivation of photocatalysis upon 1st run of UV/photocatalytic reactor (A or C) of the previous investigation. In addition, the results of XPS analysis were consistent with the experimental results of the previous investigation in that 1) deactivation of photocatalyst incurred during 2nd run of the UV/photocatalytic reactor (A or C) resulted in decreased removal efficiency, by ca. 5% and 5%, of ethanol and hydrogen sulfide, respectively, compared with its 1st run; 2) there was insignificant difference between the removal efficiencies of its 2nd run and 3rd run. Furthermore, the removal efficiencies of ethanol and hydrogen sulfide for hypothetical 4th run of photocatalytic reactor in the previous investigation, using AD3, were expected to decrease, compared with its 3rd run, by much more than those for 2nd run in the previous investigation did, compared with its 1st run.

A Study on the Efficient Utilization of Spatial Data for Heat Mapping with Remote Sensing and Simulation (원격탐사 및 시뮬레이션의 열지도 구축을 위한 공간정보 활용 효율화 연구)

  • Cho, Young-Il;Yoon, Donghyeon;Lim, Youngshin;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1421-1434
    • /
    • 2020
  • The frequency and intensity of heatwaves have been increasing due to climate change. Since urban areas are more severely damaged by heatwaves as they act in combination with the urban heat island phenomenon, every possible preparation for such heat threats is required. Many overseas local governments build heat maps using a variety of spatial information to prepare for and counteract heatwaves, and prepare heatwave measures suitable for each region with different spatial characteristics within a relevant city. Building a heat map is a first and important step to prepare for heatwaves. The cases of heat map construction and thermal environment analysis involve various area distributions from urban units with a large area to local units with a small area. The method of constructing a heat map varies from a method utilizing remote sensing to a method using simulation, but there is no standard for using differentiated spatial information according to spatial scale, so each researcher constructs a heat map and analyzes the thermal environment based on different methods. For the above reason, spatial information standards required for building a heat map according to the analysis scale should be established. To this end, this study examined spatial information, analysis methodology, and final findings related to Korean and oversea analysis studies of heatwaves and urban thermal environments to suggest ways to improve the utilization efficiency of spatial information used to build urban heat maps. As a result of the analysis, it was found that spatial, temporal, and spectral resolutions, as basic resolutions, are necessary to construct a heat map using remote sensing in the use of spatial information. In the use of simulations, it was found that the type of weather data and spatial resolution, which are input condition information for simulation implementation, differ according to the size of analysis target areas. Therefore, when constructing a heat map using remote sensing, spatial, spectral, and temporal resolution should be considered; and in the case of using simulations, the spatial resolution, which is an input condition for simulation implementation, and the conditions of weather information to be inputted, should be considered in advance. As a result of understanding the types of monitoring elements for heatwave analysis, 19 types of elements were identified such as land cover, urban spatial characteristics, buildings, topography, vegetation, and shadows, and it was found that there are differences in the types of the elements by spatial scale. This study is expected to help give direction to relevant studies in terms of the use of spatial information suitable for the size of target areas, and setting monitoring elements, when analyzing heatwaves.

GF/PC Composite Filament Design & Optimization of 3D Printing Process and Structure for Manufacturing 3D Printed Electric Vehicle Battery Module Cover (전기자동차 배터리 모듈 커버의 3D 프린팅 제작을 위한 GF/PC 복합소재 필라멘트 설계와 3D 프린팅 공정 및 구조 최적화)

  • Yoo, Jeong-Wook;Lee, Jin-Woo;Kim, Seung-Hyun;Kim, Youn-Chul;Suhr, Jong-Hwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • As the electric vehicle market grows, there is an issue of light weight vehicles to increase battery efficiency. Therefore, it is going to replace the battery module cover that protects the battery module of electric vehicles with high strength/high heat-resistant polymer composite material which has lighter weight from existing aluminum materials. It also aims to respond to the early electric vehicle market where technology changes quickly by combining 3D printing technology that is advantageous for small production of multiple varieties without restrictions on complex shapes. Based on the composite material mechanics, the critical length of glass fibers in short glass fiber (GF)/polycarbonate (PC) composite materials manufactured through extruder was derived as 453.87 ㎛, and the side feeding method was adopted to improve the residual fiber length from 365.87 ㎛ and to increase a dispersibility. Thus, the optimal properties of tensile strength 135 MPa and Young's modulus 7.8 MPa were implemented as GF/PC composite materials containing 30 wt% of GF. In addition, the filament extrusion conditions (temperature, extrusion speed) were optimized to meet the commercial filament specification of 1.75 mm thickness and 0.05 mm standard deviation. Through manufactured filaments, 3D printing process conditions (temperature, printing speed) were optimized by multi-optimization that minimize porosity, maximize tensile strength, and printing speed to increase the productivity. Through this procedure, tensile strength and elastic modulus were improved 11%, 56% respectively. Also, by post-processing, tensile strength and Young's modulus were improved 5%, 18% respectively. Lastly, using the FEA (finite element analysis) technique, the structure of the battery module cover was optimized to meet the mechanical shock test criteria of the electric vehicle battery module cover (ISO-12405), and it is satisfied the battery cover mechanical shock test while achieving 37% lighter weight compared to aluminum battery module cover. Based on this research, it is expected that 3D printing technology of polymer composite materials can be used in various fields in the future.

A Study on Foreign Exchange Rate Prediction Based on KTB, IRS and CCS Rates: Empirical Evidence from the Use of Artificial Intelligence (국고채, 금리 스왑 그리고 통화 스왑 가격에 기반한 외환시장 환율예측 연구: 인공지능 활용의 실증적 증거)

  • Lim, Hyun Wook;Jeong, Seung Hwan;Lee, Hee Soo;Oh, Kyong Joo
    • Knowledge Management Research
    • /
    • v.22 no.4
    • /
    • pp.71-85
    • /
    • 2021
  • The purpose of this study is to find out which artificial intelligence methodology is most suitable for creating a foreign exchange rate prediction model using the indicators of bond market and interest rate market. KTBs and MSBs, which are representative products of the Korea bond market, are sold on a large scale when a risk aversion occurs, and in such cases, the USD/KRW exchange rate often rises. When USD liquidity problems occur in the onshore Korean market, the KRW Cross-Currency Swap price in the interest rate market falls, then it plays as a signal to buy USD/KRW in the foreign exchange market. Considering that the price and movement of products traded in the bond market and interest rate market directly or indirectly affect the foreign exchange market, it may be regarded that there is a close and complementary relationship among the three markets. There have been studies that reveal the relationship and correlation between the bond market, interest rate market, and foreign exchange market, but many exchange rate prediction studies in the past have mainly focused on studies based on macroeconomic indicators such as GDP, current account surplus/deficit, and inflation while active research to predict the exchange rate of the foreign exchange market using artificial intelligence based on the bond market and interest rate market indicators has not been conducted yet. This study uses the bond market and interest rate market indicator, runs artificial neural network suitable for nonlinear data analysis, logistic regression suitable for linear data analysis, and decision tree suitable for nonlinear & linear data analysis, and proves that the artificial neural network is the most suitable methodology for predicting the foreign exchange rates which are nonlinear and times series data. Beyond revealing the simple correlation between the bond market, interest rate market, and foreign exchange market, capturing the trading signals between the three markets to reveal the active correlation and prove the mutual organic movement is not only to provide foreign exchange market traders with a new trading model but also to be expected to contribute to increasing the efficiency and the knowledge management of the entire financial market.

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (II): e-ASM Calibration, Effluent Prediction, Process selection, and Design (첨단 전자산업 폐수처리시설의 Water Digital Twin(II): e-ASM 모델 보정, 수질 예측, 공정 선택과 설계)

  • Heo, SungKu;Jeong, Chanhyeok;Lee, Nahui;Shim, Yerim;Woo, TaeYong;Kim, JeongIn;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.79-93
    • /
    • 2022
  • In this study, an electronics industrial wastewater activated sludge model (e-ASM) to be used as a Water Digital Twin was calibrated based on real high-tech electronics industrial wastewater treatment measurements from lab-scale and pilot-scale reactors, and examined for its treatment performance, effluent quality prediction, and optimal process selection. For specialized modeling of a high-tech electronics industrial wastewater treatment system, the kinetic parameters of the e-ASM were identified by a sensitivity analysis and calibrated by the multiple response surface method (MRS). The calibrated e-ASM showed a high compatibility of more than 90% with the experimental data from the lab-scale and pilot-scale processes. Four electronics industrial wastewater treatment processes-MLE, A2/O, 4-stage MLE-MBR, and Bardenpo-MBR-were implemented with the proposed Water Digital Twin to compare their removal efficiencies according to various electronics industrial wastewater characteristics. Bardenpo-MBR stably removed more than 90% of the chemical oxygen demand (COD) and showed the highest nitrogen removal efficiency. Furthermore, a high concentration of 1,800 mg L-1 T MAH influent could be 98% removed when the HRT of the Bardenpho-MBR process was more than 3 days. Hence, it is expected that the e-ASM in this study can be used as a Water Digital Twin platform with high compatibility in a variety of situations, including plant optimization, Water AI, and the selection of best available technology (BAT) for a sustainable high-tech electronics industry.

Development of the forecasting model for import volume by item of major countries based on economic, industrial structural and cultural factors: Focusing on the cultural factors of Korea (경제적, 산업구조적, 문화적 요인을 기반으로 한 주요 국가의 한국 품목별 수입액 예측 모형 개발: 한국의, 한국에 대한 문화적 요인을 중심으로)

  • Jun, Seung-pyo;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.23-48
    • /
    • 2021
  • The Korean economy has achieved continuous economic growth for the past several decades thanks to the government's export strategy policy. This increase in exports is playing a leading role in driving Korea's economic growth by improving economic efficiency, creating jobs, and promoting technology development. Traditionally, the main factors affecting Korea's exports can be found from two perspectives: economic factors and industrial structural factors. First, economic factors are related to exchange rates and global economic fluctuations. The impact of the exchange rate on Korea's exports depends on the exchange rate level and exchange rate volatility. Global economic fluctuations affect global import demand, which is an absolute factor influencing Korea's exports. Second, industrial structural factors are unique characteristics that occur depending on industries or products, such as slow international division of labor, increased domestic substitution of certain imported goods by China, and changes in overseas production patterns of major export industries. Looking at the most recent studies related to global exchanges, several literatures show the importance of cultural aspects as well as economic and industrial structural factors. Therefore, this study attempted to develop a forecasting model by considering cultural factors along with economic and industrial structural factors in calculating the import volume of each country from Korea. In particular, this study approaches the influence of cultural factors on imports of Korean products from the perspective of PUSH-PULL framework. The PUSH dimension is a perspective that Korea develops and actively promotes its own brand and can be defined as the degree of interest in each country for Korean brands represented by K-POP, K-FOOD, and K-CULTURE. In addition, the PULL dimension is a perspective centered on the cultural and psychological characteristics of the people of each country. This can be defined as how much they are inclined to accept Korean Flow as each country's cultural code represented by the country's governance system, masculinity, risk avoidance, and short-term/long-term orientation. The unique feature of this study is that the proposed final prediction model can be selected based on Design Principles. The design principles we presented are as follows. 1) A model was developed to reflect interest in Korea and cultural characteristics through newly added data sources. 2) It was designed in a practical and convenient way so that the forecast value can be immediately recalled by inputting changes in economic factors, item code and country code. 3) In order to derive theoretically meaningful results, an algorithm was selected that can interpret the relationship between the input and the target variable. This study can suggest meaningful implications from the technical, economic and policy aspects, and is expected to make a meaningful contribution to the export support strategies of small and medium-sized enterprises by using the import forecasting model.

Analyzing Different Contexts for Energy Terms through Text Mining of Online Science News Articles (온라인 과학 기사 텍스트 마이닝을 통해 분석한 에너지 용어 사용의 맥락)

  • Oh, Chi Yeong;Kang, Nam-Hwa
    • Journal of Science Education
    • /
    • v.45 no.3
    • /
    • pp.292-303
    • /
    • 2021
  • This study identifies the terms frequently used together with energy in online science news articles and topics of the news reports to find out how the term energy is used in everyday life and to draw implications for science curriculum and instruction about energy. A total of 2,171 online news articles in science category published by 11 major newspaper companies in Korea for one year from March 1, 2018 were selected by using energy as a search term. As a result of natural language processing, a total of 51,224 sentences consisting of 507,901 words were compiled for analysis. Using the R program, term frequency analysis, semantic network analysis, and structural topic modeling were performed. The results show that the terms with exceptionally high frequencies were technology, research, and development, which reflected the characteristics of news articles that report new findings. On the other hand, terms used more than once per two articles were industry-related terms (industry, product, system, production, market) and terms that were sufficiently expected as energy-related terms such as 'electricity' and 'environment.' Meanwhile, 'sun', 'heat', 'temperature', and 'power generation', which are frequently used in energy-related science classes, also appeared as terms belonging to the highest frequency. From a network analysis, two clusters were found including terms related to industry and technology and terms related to basic science and research. From the analysis of terms paired with energy, it was also found that terms related to the use of energy such as 'energy efficiency,' 'energy saving,' and 'energy consumption' were the most frequently used. Out of 16 topics found, four contexts of energy were drawn including 'high-tech industry,' 'industry,' 'basic science,' and 'environment and health.' The results suggest that the introduction of the concept of energy degradation as a starting point for energy classes can be effective. It also shows the need to introduce high-tech industries or the context of environment and health into energy learning.

Analysis of Optimal Resolution and Number of GCP Chips for Precision Sensor Modeling Efficiency in Satellite Images (농림위성영상 정밀센서모델링 효율성 재고를 위한 최적의 해상도 및 지상기준점 칩 개수 분석)

  • Choi, Hyeon-Gyeong;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1445-1462
    • /
    • 2022
  • Compact Advanced Satellite 500-4 (CAS500-4), which is scheduled to be launched in 2025, is a mid-resolution satellite with a 5 m resolution developed for wide-area agriculture and forest observation. To utilize satellite images, it is important to establish a precision sensor model and establish accurate geometric information. Previous research reported that a precision sensor model could be automatically established through the process of matching ground control point (GCP) chips and satellite images. Therefore, to improve the geometric accuracy of satellite images, it is necessary to improve the GCP chip matching performance. This paper proposes an improved GCP chip matching scheme for improved precision sensor modeling of mid-resolution satellite images. When using high-resolution GCP chips for matching against mid-resolution satellite images, there are two major issues: handling the resolution difference between GCP chips and satellite images and finding the optimal quantity of GCP chips. To solve these issues, this study compared and analyzed chip matching performances according to various satellite image upsampling factors and various number of chips. RapidEye images with a resolution of 5m were used as mid-resolution satellite images. GCP chips were prepared from aerial orthographic images with a resolution of 0.25 m and satellite orthogonal images with a resolution of 0.5 m. Accuracy analysis was performed using manually extracted reference points. Experiment results show that upsampling factor of two and three significantly improved sensor model accuracy. They also show that the accuracy was maintained with reduced number of GCP chips of around 100. The results of the study confirmed the possibility of applying high-resolution GCP chips for automated precision sensor modeling of mid-resolution satellite images with improved accuracy. It is expected that the results of this study can be used to establish a precise sensor model for CAS500-4.

A Study on Training Dataset Configuration for Deep Learning Based Image Matching of Multi-sensor VHR Satellite Images (다중센서 고해상도 위성영상의 딥러닝 기반 영상매칭을 위한 학습자료 구성에 관한 연구)

  • Kang, Wonbin;Jung, Minyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1505-1514
    • /
    • 2022
  • Image matching is a crucial preprocessing step for effective utilization of multi-temporal and multi-sensor very high resolution (VHR) satellite images. Deep learning (DL) method which is attracting widespread interest has proven to be an efficient approach to measure the similarity between image pairs in quick and accurate manner by extracting complex and detailed features from satellite images. However, Image matching of VHR satellite images remains challenging due to limitations of DL models in which the results are depending on the quantity and quality of training dataset, as well as the difficulty of creating training dataset with VHR satellite images. Therefore, this study examines the feasibility of DL-based method in matching pair extraction which is the most time-consuming process during image registration. This paper also aims to analyze factors that affect the accuracy based on the configuration of training dataset, when developing training dataset from existing multi-sensor VHR image database with bias for DL-based image matching. For this purpose, the generated training dataset were composed of correct matching pairs and incorrect matching pairs by assigning true and false labels to image pairs extracted using a grid-based Scale Invariant Feature Transform (SIFT) algorithm for a total of 12 multi-temporal and multi-sensor VHR images. The Siamese convolutional neural network (SCNN), proposed for matching pair extraction on constructed training dataset, proceeds with model learning and measures similarities by passing two images in parallel to the two identical convolutional neural network structures. The results from this study confirm that data acquired from VHR satellite image database can be used as DL training dataset and indicate the potential to improve efficiency of the matching process by appropriate configuration of multi-sensor images. DL-based image matching techniques using multi-sensor VHR satellite images are expected to replace existing manual-based feature extraction methods based on its stable performance, thus further develop into an integrated DL-based image registration framework.