• Title/Summary/Keyword: Expected Total Cost

Search Result 425, Processing Time 0.026 seconds

A Study on Application of RCM Method to Power Distribution System using Ordinal Optimization (Ordinal Optimization을 이용한 배전계통에 RCM 적용기법에 관한 연구)

  • Moon, Jong-Fil;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.2
    • /
    • pp.67-73
    • /
    • 2012
  • This paper proposes optimal maintenance strategies for power distribution systems that involve the use of the reliability-centered maintenance (RCM) method. We developed an improved decision model based on the Markov process. This model can obtain the optimal inspection interval and maintenance method based on the total expected cost. We used ordinal optimization for solving the optimal problem. Optimal maintenance strategies were presented by applying the developed method to the RBTS model. A B/C analysis proved that these strategies offer maximum benefit-to-cost.

On The Performance of A Suboptimal Assignment Policy in N-Queue m-Server System

  • Ko Soon-Ju
    • Journal of the military operations research society of Korea
    • /
    • v.17 no.1
    • /
    • pp.43-60
    • /
    • 1991
  • Consider N queues without arrivals and with m identical servers. All jobs are independent and service requirements of jobs in a queue are i.i.d. random variables. At any time only one server may be assigned to a queue and switching between queues are allowed. A unit cost is imposed per job per unit time. The objective is to minimized the expected total cost. An flow approximation model is considered and an upperbound for the percentage error of best nonswitching policies to an optimal policy is found. It is shown that the best nonswitching policy is not worse than $11\%$ of an optimal policy For the stochastic model, we consider the case in which the service requirements of all jobs are i.i.d. with an exponential distribution. A longest first policy is shown to be optimal and a worst case analysis shows that the nonswitching policy which starts with the longest queues is not worse than $11\%$ of the optimal policy.

  • PDF

Aeration Control of Thermophilic Aerobic Digestion Using Fluorescence Monitoring

  • Kim, Young-Kee;Oh, Byung-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.93-98
    • /
    • 2009
  • The thermophilic aerobic digestion (TAD) process is recognized as an effective method for rapid waste activated sludge (WAS) degradation and the deactivation of pathogenic microorganisms. Yet, high energy costs due to heating and aeration have limited the commercialization of economical TAD processes. Previous research on autothermal thermophilic aerobic digestion (ATAD) has already reduced the heating cost. However, only a few studies have focused on reducing the aeration cost. Therefore, this study applied a two-step aeration control strategy to a fill-and-draw mode semicontinuous TAD process. The NADH-dependent fluorescence was monitored throughout the TAD experiment, and the aeration rate shifted according to the fluorescence intensity. As a result, the simple two-step aeration control operation achieved a 20.3% reduction in the total aeration, while maintaining an effective and stable operation. It is also expected that more savings can be achieved with a further reduction of the lower aeration rate or multisegmentation of the aeration rate.

Determination of Optimal Replacement Period for A Multicomponent System Consider with Failure Types (고장형태(故障形態)를 고려(考慮)한 다부품장비(多部品裝備)의 최적교환시기(最適交換時期) 결정(決定))

  • Lee, Seung-Jun;Gang, Chang-Uk;Hwang, Ui-Cheol
    • Journal of Korean Society for Quality Management
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 1991
  • In this paper, it is assumed that a system is composed of an essential unit and a nonessential unit. During the running of the system, an essential unit is replaced at periodic replacement time T or at nth failure of essential unit whichever occurs first. Nonessential unit is replaced at its failure and at the replacement of essential unit. This paper derive optimal replacement period which minmises the total expected cost for replacement. The unimodality of totoal maintenance cost function is proved under the assumption that hazard rate of each component is continuous and monotone increasing failure rate(IFR). Based on this condition, it is shown that the optimal replacement period is finite and unique.

  • PDF

Estimation of Optimal Modal Split Considering the Subsidy Policy - In the Case of Dual Mode Trailer (보조금 정책을 고려한 적정 수송 분담률 추정 모형 - Dual Mode Trailer(DMT) 사례를 중심으로)

  • Park, Bum-Hwan;Kim, Chung-Soo;Lee, Kang-Won
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.205-211
    • /
    • 2009
  • There is need to reform the road-based logistic transportation system into the railway-based logistics transportation system in order to decrease the total social cost related with logistics transportation. And new transportation modes such as dual mode trailer (DMT) are under consideration, which are expected to decrease current market share of road. But, most of current studies about estimating economical efficiency are focused on developing the probabilistic choice model and then estimating the market share of each mode. We present an approach to compute the optimal market share of each mode in terms of total social cost. To do so, we suggest an optimization model capturing both user choice to maximize his utility and subsidy policy intended to minimize total social cost, simultaneously. Using this model, we present the optimal modal split of container freight.

A Comparative Study on the Costs of Structural Materials Based on Different Types of Soil Load on Artificial Ground (인공지반에서 토양하중에 따른 건축구조물 골조원가의 비교연구)

  • 김도경;황지환
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.6
    • /
    • pp.72-81
    • /
    • 2002
  • The purpose of this study is to determine the impact of the soil load for artificial ground on a building's structural expenses. Three types of soil - 100% soil, soil mixed with 50% perlite, and 100% artificial soil - were used for this study. A one story concrete steel building specific to each soil load was designed, and then, the cost of steel and concrete used for the design was estimated. As the result of this study, the structural expenses in the case of 5:5 mixed soil can be reduced about 17% compare with 100% soil. Using artificial soil, the structural expenses can be cut about 32% compare to 100% soil and about 12% less when 5:5 mixed soil is used. However, considering total expense which includes the structural expense and soil expense, the expense of 5:5 mixed soil have an increase 25% compared with 100% soil. In the artificial soil, the total expense is 45% more expensive than 100% soil and 17% higher when 5:5 mixed soil is used because of the high unit price of artificial soil. This study expected substantial savings in structural cost as the soil-load was lightened. But, savings were significantly reduced because the unit price of the artificial soil is much more expensive than the price of the natural one. Therefore, further research on methods of reducing the unit price of the artificial soil should be conducted in order to extend green space on to artificial ground.

Health and Economic Burden of HPV-related Diseases in Singapore

  • Low, Jeffrey Jen Hui;Ko, Yu;Ilancheran, Arunachalam;Zhang, Xu Hao;Singhal, Puneet K.;Tay, Sun Kuie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.305-308
    • /
    • 2012
  • Objective: To assess the health and economic burden of human papillomavirus (HPV)-related diseases (cervical cancer, cervical intraepithelial neoplasia (CIN) 1/2/3, and genital warts) in Singapore over a period of 25 years beginning in 2008. Methods: Incidence-based modeling was used to estimate the incidence cases and associated economic burden, with the assumption that age-stratified incidence rates will remain the same throughout the period of 25 years. The incidence rates in 2008 were projected based on data obtained from the National Cancer Registry for cervical cancer, and from a combination of published data and hospital registry review for CIN1/2/3 and genital warts. The population growth rate was factored into the projection of incidence cases over time. Direct cost data per cervical cancer and per CIN1/2/3 case were obtained from the financial database of large local hospitals while cost data for genital warts were obtained from the National Skin Center; these costs were multiplied by the number of incidence cases to produce an aggregate estimate of the economic burden over the 25-year period (in 2008 Singapore dollars) using a 3% discount rate. Results: The total number of incidence cases of HPV-disease over 25 years beginning in 2008 was estimated to be 60,183, including 8,078 for cervical cancer, 11,685 for CIN 2/3, 8,849 for CIN1, and 31,572 for genital warts. The estimated total direct cost was 83.2 million Singapore Dollars over 25 years: 57.6 million attributable to cervical cancer, 13.0 million to CIN2/3, 6.83 million to CIN1, and 5.70 million to genital warts. Conclusion: HPV-related diseases are expected to impose significant health and economic burden on the Singapore healthcare resources in the next 25 years.

Real-Time Job Scheduling Strategy for Grid Computing (그리드 컴퓨팅을 위한 실시간 작업 스케줄링 정책)

  • Choe, Jun-Young;Lee, Won-Joo;Jeon, Chang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • In this paper, we propose a scheduling strategy for grid environment that reduces resource cost. This strategy considers resource cost and job failure rate to efficiently allocate local computing resources. The key idea of our strategy is that we use two-level scheduling using remote and local scheduler. The remote scheduler determines the expected total execution times of jobs using the current network and local system status maintained in its resource database and allocates jobs with minimum total execution time to local systems. The local scheduler recalculates the waiting time and execution time of allocated job and uses it to determine whether the job can be processed within the specified deadline. If it cannot finish in time, the job is migrated other local systems, through simulation, we show that it is more effective to reduce the resource cost than the previous Greedy strategy. We also show that the proposed strategy improves the performance compared to previous Greedy strategy.

Model Structure and its Solution of Analytical Research on Transit Network Design (대중교통 노선망 설계에 관한 해석적 연구의 모형 구조와 풀이)

  • Park, Jun-Sik;Gwon, Yong-Seok
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.129-140
    • /
    • 2007
  • The planning procedure of a transit operation consists of design, operation, and evaluation according to the research characteristics. There are some review studies on the operation and evaluation procedure, but the research on the design procedure has not yet been organized systematically. In this study, the research on transit system design was reviewed and the model structure and its solution method were arranged. The decision variables of the design procedure are network structure, line spacing or position, stop spacing, dispatching headway, and fleet size. In the analytical research on design procedure, system total cost is generally used as the objective function. System total cost is comprised of user cost, which is the sum of user access, waiting, and travel cost, and operating cost. Total cost of the transit system, used as the objective function, has the unique minimum because it is differentiable. There is a certain decision variable that makes the derivative of the objective function equal to zero and the second derivative of the objective function is positive. Therefore the decision variable that makes the first derivative of the objective function zero is the optimum that minimizes the objective function, and each of the cost components of the objective function become the same. This study is expected to help understanding about the research on the design procedure of transit operation planning and to help be a catalyst for relevant research.

The Analysis of COVID-19 Pooled-Testing Systems with False Negatives Using a Queueing Model (대기행렬을 이용한 위음성률이 있는 코로나 취합검사 시스템의 분석)

  • Kim, Kilhwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.154-168
    • /
    • 2021
  • COVID-19 has been spreading all around the world, and threatening global health. In this situation, identifying and isolating infected individuals rapidly has been one of the most important measures to contain the epidemic. However, the standard diagnosis procedure with RT-PCR (Reverse Transcriptase Polymerase Chain Reaction) is costly and time-consuming. For this reason, pooled testing for COVID-19 has been proposed from the early stage of the COVID-19 pandemic to reduce the cost and time of identifying the COVID-19 infection. For pooled testing, how many samples are tested in group is the most significant factor to the performance of the test system. When the arrivals of test requirements and the test time are stochastic, batch-service queueing models have been utilized for the analysis of pooled-testing systems. However, most of them do not consider the false-negative test results of pooled testing in their performance analysis. For the COVID-19 RT-PCR test, there is a small but certain possibility of false-negative test results, and the group-test size affects not only the time and cost of pooled testing, but also the false-negative rate of pooled testing, which is a significant concern to public health authorities. In this study, we analyze the performance of COVID-19 pooled-testing systems with false-negative test results. To do this, we first formulate the COVID-19 pooled-testing systems with false negatives as a batch-service queuing model, and then obtain the performance measures such as the expected number of test requirements in the system, the expected number of RP-PCR tests for a test sample, the false-negative group-test rate, and the total cost per unit time, using the queueing analysis. We also present a numerical example to demonstrate the applicability of our analysis, and draw a couple of implications for COVID-19 pooled testing.