• Title/Summary/Keyword: Expected Life-Cycle Cost

Search Result 145, Processing Time 0.029 seconds

Initial Investment Cost Analysis of Facilities of B2S Track System (B2S궤도시스템의 초기 시설 투입비용 분석)

  • Kim, Hyo-San;Min, Jun-Ho;Ryu, Jae-Kwang;Lee, Dal-Jae
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.733-739
    • /
    • 2011
  • B2S(Ballasted track To Slab track) that is track system has been first developed in 2004 with foundation of rich experience and know-how of subway track upkeep and mending of facilities in 36 years to improve an existence pebble track at a concrete track. 'B2S' is admitted technology through patent registration in the domestic and Europe and it's made by a factory and put together at field, so it's able to construct precisely and to reduce a construction period. In addition, safety, the ecological balance and durability are excellent, and walking, cleaning, etc. has the advantage of easy maintenance. 'B2S' is currently laying 27.7km at Seoulmetro as of end of 2010 standard, but it'll be expected to be applied to a domestic Metro more from now on. It is possible to classify the total cost resolution structure of B2S system by R&D cost, test production and experiment cost, the initial facility cost, maintenance cost, disposal cost. In this research, it seems useful for selection evaluation which considered the life cycle cost or economics of the concrete track structure by analyzing an initial cost of facilities.

  • PDF

A Study on Cost-Effectiveness Evaluation and Optimal Design of ant dampers for Cable-Stayed Bridges (사장교에 장착된 MR 댐퍼의 비용효율성 평가 및 최적설계 연구)

  • Park, Won-Suk;Hahm, Dae-Gi;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.47-56
    • /
    • 2006
  • A method is presented for evaluating the economic efficiency of a semi-active magneto-rheological (MR) damper system for cable-stayed bridges under earthquake loadings. An optimal MR damper capacity maximizing the cost-effectiveness is estimated for various seismic characteristics of ground motion. The economic efficiency of MR damper system is addressed by introducing the life-cycle cost concept. To evaluate the expected damage cost, the probability of failure is estimated. The cost-effectiveness index is defined as the ratio of the sums of the expected damage costs and each device cost between a bridge structure with the MR damper system and a bridge structure with elastic bearings. In the evaluation of cost-effectiveness, the scale of damage cost is adopted as parametric variables. The results of the evaluation show that the MR damper system can be a cost-effective design alternative. The optical capacity of MR damper is increased as the seismic hazard becomes severe.

DEVELOPMENT OF A WEB-BASED COST AND DURATION MANAGEMENT SYSTEM FOR MEGA-PROJECTS

  • Chang-Taek Hyun;Run-Zhi Jin;Myoung-Jin Son;Seung-Yoon Shin
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.510-515
    • /
    • 2011
  • Urban renewal projects, in the form of mega-projects, are being actively implemented both nationally and internationally to revitalize inactive cities. These programs, however, are difficult to manage efficiently due to their need for a large budget over a long period of time and due to conflicts with stockholders. Moreover, existing cost and duration management systems are structured with emphasis on the design and construction stage of unit projects, thus limiting their application to long-term mega-projects that are integrated with various facilities. To solve these problems, this study developed a web-based system that can collectively manage the cost and duration of mega-projects at a program level. The unit modules included in the system--CBS organization, construction cost and duration prediction, and total cost and duration prediction--can support decision-making at the early stage of the program. Furthermore, the modules, which include contract management, execution management, change management, and program progress management, support the program operations for its successful accomplishment. The web-based cost and duration management system developed in this study is expected to be used as a valuable tool that supports the successful accomplishment of mega-projects through their efficient management throughout their life cycle.

  • PDF

AM600: A New Look at the Nuclear Steam Cycle

  • Field, Robert M.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.621-631
    • /
    • 2017
  • Many developing countries considering the introduction of nuclear power find that large-scale reactor plants in the range of 1,000 MWe to 1,600 MWe are not grid appropriate for their current circumstance. By contrast, small modular reactors are generally too small to make significant contributions toward rapidly growing electricity demand and to date have not been demonstrated. This paper proposes a radically simplified re-design for the nuclear steam cycle for a medium-sized reactor plant in the range of 600 MWe. Historically, balance of plant designs for units of this size have emphasized reliability and efficiency. It will be demonstrated here that advances over the past 50 years in component design, materials, and fabrication techniques allow both of these goals to be met with a less complex design. A disciplined approach to reduce component count will result in substantial benefits in the life cycle cost of the units. Specifically, fabrication, transportation, construction, operations, and maintenance costs and expenses can all see significant reductions. In addition, the design described here can also be expected to significantly reduce both construction duration and operational requirements for maintenance and inspections.

Analysis of Influencing Item of Green Building Certification;Focused on Energy Part of Commercial Buildings (친환경 인증 사업타당성 영향요인 분석;업무용건축물의 에너지 평가부문을 중심으로)

  • Kook, Dong-Hoon;Kim, Ah-Yung;Han, Kap-Kyu;Kim, Sun-Kuk
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.431-435
    • /
    • 2007
  • Green Building Certification Program, which was first introduced to residential buildings in Korea in 2002, has been put on track. This program is expected to bring about the effect in the economic viewpoint that was based on a life-cycle-cost analysis, not to mention the environmental viewpoint. However, given the fact that the existing model for feasibility analysis focusing on early investment cost can hardly be applicable to the green buildings because of lacking the life-cycle-cost reduction factor, it remains still difficult to conduct an objective evaluation. The study thus was intended to identify the factors that should be additionally considered in conducting the feasibility study to be implemented through the analysis of the certification items of green buildings as a preliminary study in structuring the evaluation model for feasibility analysis of green buildings.

  • PDF

The Economic Value Analysis of the Potential Wind Farm Site Using the Black-Scholes Model (블랙 숄즈 모델을 이용한 잠재적 풍력발전 위치의 경제적 가치분석)

  • Jaehun Sim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.21-30
    • /
    • 2022
  • To mitigate the environmental impacts of the energy sector, the government of South Korea has made a continuous effort to facilitate the development and commercialization of renewable energy. As a result, the efficiency of renewable energy plants is not a consideration in the potential site selection process. To contribute to the overall sustainability of this increasingly important sector, this study utilizes the Black-Scholes model to evaluate the economic value of potential sites for off-site wind farms, while analyzing the environmental mitigation of these potential sites in terms of carbon emission reduction. In order to incorporate the importance of flexibility and uncertainty factors in the evaluation process, this study has developed a site evaluation model focused on system dynamics and real option approaches that compares the expected revenue and expected cost during the life cycle of off-site wind farm sites. Using sensitivity analysis, this study further investigates two uncertainty factors (namely, investment cost and wind energy production) on the economic value and carbon emission reduction of potential wind farm locations.

An Empirical Study of Implementation and Application of Mold Life Cycle Management Information System In the Cloud Computing Environment (클라우드 컴퓨팅 환경에서 금형 수명주기관리 정보시스템 구축 및 적용의 실증적 연구)

  • Koh, Joon-Cheol;Nam, Seung-Done;Kim, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.331-341
    • /
    • 2014
  • Internet of Thing(IoT), which is recently talked about with the development of information and communication technology, provides big data to all nodes such as companies and homes, means of transportation etc. by connecting all things with all people through the integrated global network and connecting all actual aspects of economic and social life with Internet of Thing through sensor and software. Defining Internet of Thing, it plays the role of a connector of providing various information required for the decision-making of companies in the cloud computing environment for the Insight usage by collecting and storing Raw Data of the production site through the sensor network and extracting big data in which data is accumulated and Insight through this. In addition, as the industry showing the largest linkage with other root industries among root industries, the mold industry is the core technology for controlling the quality and performance of the final product and realizing the commercialization of new industry such as new growth power industry etc. Recently, awareness on the mold industry is changing from the structure of being labor-intensive, relying on the experience of production workers and repeating modification without the concept of cost to technology-intensive, digitization, high intellectualization due to technology combination according to IT convergence. This study, therefore, is to provide a golden opportunity to increase the direct and indirect expected effects in poor management activities of small businesses by actually implementing and managing the entire process of mold life cycle to information system from mold planning to mass production and preservation by building SME(small and medium-sized enterprises)-type mold life cycle management information system in the cloud computing environment and applying it to the production site.

Development of an Economic Evaluation model for Coating System Based on Environmental Conditions of Power Generation Structure (발전구조물의 환경조건을 반영한 도장계 선정 경제성 평가 모델 개발)

  • Kim, In Tae;Lee, Su Young;An, Jin Hee;Kim, Chang Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.77-85
    • /
    • 2020
  • Currently, life-cycle cost analysis methods are introduced to maintain large infrastructure facilities in Korea. However, there are not many cases in which maintenance models are applied that reflect conditions such as the location of a facility and its surroundings. In order to establish an appropriate maintenance strategy, a cost prediction, deterioration model, and a decision model reflecting uncertainty should be established. In this study, an economic analysis model was developed for long-term cost planning and management based on user decisions based on maintenance methods and judgment criteria for painting specifications applied to power generation structures. The performance of the paintwork was assessed through the paint deterioration test for the application of the economic analysis model, and the results of the economic analysis according to the applied paint specifications (Urethan, polysiloxane, fluorine) were verified by applying the proposed economic analysis model. In this study, it is believed that the selection of the repair cycle and evaluation methods applied with the development model rather than the performance of the painting can be expected to be used as basic data for the maintenance cycle, even if it is not limited to the painting.

An Analysis of the Uncertainty Factors for the Life Cycle Cost of Light Railroad Transit (경량전철 교량 LCC분석을 위한 불확실성 인자 분석)

  • Won, Seo-Kyung;Lee, Du-Heon;Kim, Kyoon-Tai;Kim, Hyun-Bae;Jun, Jin-Taek;Han, Choong-Hee
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.396-400
    • /
    • 2007
  • Various ways of automated guideway transit construction are being planned recently owing to the policies of the national government and local municipalities as well as increasing investment from the private sector. Particularly, the increase in the private investment is increasing greatly in SOC (Social Overhead Cost). This trend of promoting private sector investment must be conducted on the basis of a thorough analysis of the economic feasibility of the project from the government and construction companies in the private sector. In other words, an accurate cost analysis of initial investment cost (Construction cost), maintenance/repair cost, profit making through the operation of the concerned facilities, cost of dissolution, etc. in terms of the life cycle is very much in need. Nevertheless, the analysis of uncertainty factors and its probabilistic theory are in need of development so that they can be used in the analysis of the economic feasibility of a construction project. First of all, the actual studies on maintenance/repair cost of automated guideway transit are scarce as of yet, prohibiting an accurate computation of the cost and its economic analysis. Accordingly, this study focused on the uncertainty analysis of the economic feasibility for civil engineering structures among automated guideway transit construction projects based on the rapidly increasing investment on such structures from the private sector. For this research purpose, a cost classification system for the automated guideway transit is proposed, first of all, and the data On the cost cycle of the civil structure facilities and their unit cost are collected and analyzed. Then, the uncertainty in the cost is analyzed from the perspective of LCC. In consideration of the current status with almost no. studies on maintenance/repair of such facilities, it is expected that the cost classification system and the uncertainty analysis technique proposed in this study will greatly enhance LCC analysis and economic feasibility studies for automated guideway transit projects in the future.

  • PDF

Road Maintenance Planning with Traffic Demand Forecasting (장래교통수요예측을 고려한 도로 유지관리 방안)

  • Kim, Jeongmin;Choi, Seunghyun;Do, Myungsik;Han, Daeseok
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.47-57
    • /
    • 2016
  • PURPOSES : This study aims to examine the differences between the existing traffic demand forecasting method and the traffic demand forecasting method considering future regional development plans and new road construction and expansion plans using a four-step traffic demand forecast for a more objective and sophisticated national highway maintenance. This study ultimately aims to present future pavement deterioration and budget forecasting planning based on the examination. METHODS : This study used the latest data offered by the Korea Transport Data Base (KTDB) as the basic data for demand forecast. The analysis scope was set using the Daejeon Metropolitan City's O/D and network data. This study used a traffic demand program called TransCad, and performed a traffic assignment by vehicle type through the application of a user equilibrium-based multi-class assignment technique. This study forecasted future traffic demand by verifying whether or not a realistic traffic pattern was expressed similarly by undertaking a calibration process. This study performed a life cycle cost analysis based on traffic using the forecasted future demand or existing past pattern, or by assuming the constant traffic demand. The maintenance criteria were decided according to equivalent single axle loads (ESAL). The maintenance period in the concerned section was calculated in this study. This study also computed the maintenance costs using a construction method by applying the maintenance criteria considering the ESAL. The road user costs were calculated by using the user cost calculation logic applied to the Korean Pavement Management System, which is the existing study outcome. RESULTS : This study ascertained that the increase and decrease of traffic occurred in the concerned section according to the future development plans. Furthermore, there were differences from demand forecasting that did not consider the development plans. Realistic and accurate demand forecasting supported an optimized decision making that efficiently assigns maintenance costs, and can be used as very important basic information for maintenance decision making. CONCLUSIONS : Therefore, decision making for a more efficient and sophisticated road management than the method assuming future traffic can be expected to be the same as the existing pattern or steady traffic demand. The reflection of a reliable forecasting of the future traffic demand to life cycle cost analysis (LCCA) can be a very vital factor because many studies are generally performed without considering the future traffic demand or with an analysis through setting a scenario upon LCCA within a pavement management system.