기 구축되어있는 베이지안 네트워크에서 다이나믹한 환경 변화가 발생 할 때, 관련된 베이지안 네트워크의 파라미터는 새롭게 형성된 데이터의 패턴에 적응하여 새로운 파라미터로 변경되어야 한다. 이때, 새로운 파라미터는 베이지안 네트워크의 인과관계를 고려하여 변경되어야 한다. 본 논문에서는 Expectation Maximization(EM)알고리즘과 Meta-Heuristics 기법 중 하나인 Harmony Search(HS)알고리즘을 이용한 다이나믹한 파라미터 업데이트 프레임웍을 제안한다. 일반적으로, EM 알고리즘은 숨겨진 파라미터를 추정하는데 유효한 알고리즘이지만 지역 최적값에 수렴한다는 단점을 가지고 있다. 이 문제를 해결하기 위해서 본 논문은 Maximum Likelihood Estimator(MLE)의 파라미터가 글로벌 최적값을 지향하도록 하기위하여 메타휴리스틱 방법론의 하나인 HS를 적용한다. 제안된 방법은 EM 알고리즘의 단점을 보완하고 글로벌 최적값에 수렴하는 MLE의 파라미터를 추정하여 다이나믹하게 변화하는 환경에서도 사용 가능한 베이지안 네트워크의 학습 및 전파프레임웍을 제시한다.
This paper proposes a method of estimating the lifetime distribution at use condition for constant stress accelerated life tests when an infant-mortality failure mode as well as wear-out one exists. General limited failure population model is introduced to describe these failure modes. It is assumed that the log lifetime of each failure mode follows a location-scale distribution and a linear relation exists between the location parameter and the stress. An estimation procedure using the expectation and maximization algorithm is proposed. Specific formulas for Weibull distribution are obtained. An illustrative example and the simulation results are given.
본 논문에서는 한 장의 영상에서 안개를 제거하는 알고리즘을 제안한다. 기존의 Dark Channel Prior(DCP) 알고리즘은 영상의 어두운 정보를 계산하여 전달량을 추정한 후, 매팅(matting) 기법을 사용하여 안개 영역을 보완하여 검출한다. 이 과정에서 블록현상이 발생하는 문제가 있으며 이로 인해 안개를 효율적으로 제거하는데 한계점이 있다. 이 문제를 해결하기 위해 본 논문에서는 Hidden Markov Random Field(HMRF) 와 Expectation-Maximization(EM) 알고리즘을 이용하여 매팅 과정에서 발생하는 블록문제를 해결하고자 하였다. 실험 결과를 통하여 제안한 방법은 기존 방법보다 안개제거에서 더 향상된 결과를 얻을 수 있음을 확인하였다.
본 논문은 다중 경로 다중입력 (Multiple-input multiple-output : MIMO) 채널에서 space alternating generalized expectation-maximization(SAGE) 알고리즘을 이용하여 채널 파라미터 추정 성능을 확인한다. 성능을 비교하기 위해 781 대역의 제주도 측정지역에서의 채널 파라미터로부터 시변 채널 환경 채널 파라미터 추정을 SAGE 알고리즘을 통해 추정하고 원본 데이터와 비교한다. 이를 통해 SAGE 알고리즘의 성능을 확인할 수 있으며 일반적인 파라미터 계산보다 SAGE 알고리즘을 통해 추정하는 것이 지연 확산(Delay Spread), 도래각 확산(Arrive of Angular Spread)이 적어 정확 측면에서 성능이 뛰어나고 안정적이다.
본 논문에서는 잡음에 강인한 음성인식을 위해서 expectation-maximization (EM) 방식을 이용하여 잡음의 평균값을 추정하는 새로운 알고리듬을 제안하였다. 제안된 알고리듬에서는 온라인상의 인식용 음성이 직접 Bayesian 적응을 위해서 사용되며, 또한 훈련데이터를 이용하여 잡음의 평균값에 대한 사전 (prior) 분포를 알아낸 후 Bayesian 적응시에 이용한다. 잡음 음성의 모델링을 위해서는 PMC (parallel model combination) 방식을 이용하였고, 제안된 방식을 이용하여 자동차 잡음 환경 하에서 인식 실험을 수행한 결과, 기존의 PMC 방식에 비해서 향상된 인식성능을 보임을 알 수 있었다.
본 논문은 온라인 전자문서환경에서 전통적 베이지안 통계기반 문서분류시스템의 분류성능을 개선하기 위해 EM(Expectation Maximization) 가속 알고리즘을 접목한 방법을 제안한다. 기계학습 기반의 문서분류시스템의 중요한 문제 중의 하나는 양질의 학습문서를 확보하는 것이다. EM 알고리즘은 소량의 학습문서집합으로 베이지안 문서분류 알고리즘의 성능을 높이는데 활용된다. 그러나 EM 알고리즘은 최적화 과정에서 느린 수렴성과 성능 저하 현상을 나타내는데, EM 알고리즘의 기본 가정을 따르지 않는 온라인 전자문서환경에서 특히 그러하다. 제안 기법의 주요 아이디어는 전통적 EM 알고리즘을 개선하기 위해 불확정성도 기반 선택적 샘플링 기법을 활용한 것이다. 성능평가를 위해 Reuter-21578 문서집합을 사용하여, 제안 알고리즘의 빠른 수렴성을 보이고 전통적 베이지안 알고리즘의 분류 정확성을 향상시켰음을 보인다.
IEIE Transactions on Smart Processing and Computing
/
제4권4호
/
pp.202-208
/
2015
In this study, we propose a new inference algorithm for a multiclass Gaussian process classification model using a variational EM framework and the Laplace approximation (LA) technique. This is performed in two steps, called expectation and maximization. First, in the expectation step (E-step), using Bayes' theorem and the LA technique, we derive the approximate posterior distribution of the latent function, indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. In the maximization step, we compute the maximum likelihood estimators for hyper-parameters of a covariance matrix necessary to define the prior distribution of the latent function by using the posterior distribution derived in the E-step. These steps iteratively repeat until a convergence condition is satisfied. Moreover, we conducted the experiments by using synthetic data and Iris data in order to verify the performance of the proposed algorithm. Experimental results reveal that the proposed algorithm shows good performance on these datasets.
Reliable detection of primary user activity increases the opportunity to access temporarily unused bands and prevents harmful interference to the primary system. By extracting a global decision from local sensing results, cooperative sensing achieves high reliability against multipath fading. For the effective combining of sensing results, which is generalized by a likelihood ratio test, the fusion center should learn some parameters, such as the probabilities of primary transmission, false alarm, and detection at the local sensors. During the training period in supervised learning, the on/off log of primary transmission serves as the output label of decision statistics from the local sensor. In this paper, we extend unsupervised learning techniques with an expectation maximization algorithm for cooperative spectrum sensing, which does not require an external primary transmission log. Local sensors report binary hard decisions to the fusion center and adjust their operating points to enhance learning performance. Increasing the number of sensors, the joint-expectation step makes a confident classification on the primary transmission as in the supervised learning. Thereby, the proposed scheme provides accurate parameter estimates and a fast convergence rate even in low signal-to-noise ratio regimes, where the primary signal is dominated by the noise at the local sensors.
본 논문은 여러 분야에서 활용될 수 있는 향상된 고속 Expectation-Maximization(FEM) 알고리즘을 제안한다. 첫째, EM의 초기값 설정의 방법으로 많이 사용되고 있는 클러스터링 기법인 K-means의 문제점을 해결하여 개선된 EM의 초기값 선정에 적용하였다. 이것은 기존 K-means 알고리즘에서 임의로 지정하던 랜덤한 초기값 선정을, 데이타 분포 특성을 이용한 균등 분할법을 사용하여 EM의 초기값 문제를 해결하였다. 둘째, EM 과정의 핵심을 이루는 후행 확률(Posterior)의 의미를 부각하여 최대 가능성 후행 확률(Maximum Likelihood Posterior: MLP)과정을 적용하였다. 최종적으로, 본 논문에서 제안한 고속 EM알고리즘(FEM)은 근본적으로 해결하기 못했던 기존의 EM 초기치 선정과 수렴에 대한 문제점을 개선함으로써, EM 알고리즘의 특성을 극대화하는 방향으로 상대적으로 마른 수렴과 향상된 결과를 가져온다. 제안된 알고리즘의 객관적 타당성을 위해 기존의 방법과 제안된 방법에 의한 시뮬레이션의 결과를 여러 데이타들을 가지고 비교 분석하여 제안한 알고리즘의 우수성을 입증하였다.
본 논문은 시스템 공학의 인식에 관련된 여러 분야에서 널리 쓰이는 클러스터링 기법인 Expectation-Maximization의 초기값 설정문제에 관하여 새로운 방법을 제안한다. 기존의 임의로 지정하는 랜덤한 초기치 선정 문제점을 지적하고, 새로이 제안하는 균등 영역 분할과 분할 된 데이터의 통계적 특성을 이용한 초기치 설정 방법을 사용한 새로운 EM 알고리즘을 제안한다. 일반적으로 EM에서 초기값 설정 방법으로 랜덤한 설정 방식의 약점을 보완하기 위하여 K-means 방법을 많이 사용하고 있다. 하지만, K-means 초기치 설정 방법도 근본적인 문제는 해결하지 못하고 있다. 이러한 문제의 하나의 해결 방안으로 논문이 제안한 균등 분할 및 통계적 특성을 이용한 초기치 선정의 방법을 EM 알고리즘에 적용하였다. 제안된 방법은 기존보다 EM 알고리즘의 특성을 극대화하는 방향으로 더 좋은 결과를 가져온다. 본 논문에서 제안된 알고리즘의 우수성을 제안한 초기치 선정 방법을 적용한 EM과 기존 EM의 시뮬레이션 결과를 비교 분석하여 그 우수성을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.