• 제목/요약/키워드: Expectation and Maximization Algorithm

검색결과 161건 처리시간 0.016초

다중가우시안혼합모델을 이용한 소동물 심근경색 PET 영상의 정량적 평가 기술 (Quantitative Assessment Technology of Small Animal Myocardial Infarction PET Image Using Gaussian Mixture Model)

  • 우상근;이용진;이원호;김민환;박지애;김진수;김종국;강주현;지영훈;최창운;임상무;김경민
    • 한국의학물리학회지:의학물리
    • /
    • 제22권1호
    • /
    • pp.42-51
    • /
    • 2011
  • 전통적으로 심근 생존능을 식별하고 심근 관류를 정확히 평가하기 위한 도구로 핵의학영상이 이용되고 있으나 경색영역을 정의하기에는 어려움이 있다. 이에 본 연구에서는 극성지도의 분포를 분석하여 특성에 맞는 적응적 임계값을 이용하여 심근경색 모델을 정량적으로 평가하고자 하였다. 쥐 심근경색 모델은 왼쪽 관상동맥을 결찰시켜 제작하였다. 소동물PET 영상은 37 MBq $^{18}F$-FDG를 쥐의 꼬리정맥에 주사한 후 60분 섭취 후 Siemens Inveon SPECT/PET 스캐너를 이용하여 20분 동안 ECG 신호와 함께 획득하였고, OSEM 2D 알고리즘을 이용하여 재구성하였다. PET 영상의 심근 극성지도는 Siemens QGS 소프트웨어에 적합한 형식으로 변환 후 자동으로 심근 벽을 설정하여 작성하였다. 심근경색영역의 기준데이터는 TTC 염색으로 설정하였으며 전체 좌심실대비 염색된 영역의 백분율로 획득하였다. 최적의 임계값 설정을 위해 절대치 설정 방법, Otsu 알고리즘, 다중가우시안혼합모델(Multi Gaussian mixture model, MGMM)을 이용하여 평가하였다. 절대치 설정 방법은 10~90%까지 10%단위로 미리 정의 된 임계값을 이용하였고, Otsu 알고리즘은 영상 내에서 두 군집의 분산을 최대로 하는 임계값으로 설정하였다. MGMM 방법은 영상의 화소 강도를 분석하여 여러 개의 가우시안 분포함수(MGMM2, $\cdots$ MGMM4)로 반복 수행하여 최적의 가우시안 분포를 구하여 적응적 임계값을 설정하였다. 극성지도 평가지표는 각각의 알고리즘에서 측정된 임계값을 이용하여 이진화하고 전체 극성지도와 경색영역의 백분율로 획득한 후, TTC 염색으로 획득된 기준데이터와의 차이를 비교하였다. 그 차이는 절대치 방법의 20%에서 $7.04{\pm}3.44%$, 30%에서 $3.87{\pm}2.09%$, 40%에서 $2.15{\pm}2.07%$이었다. Otsu 방법은 $3.56{\pm}4.16%$이었으며 MGMM 방법은 $2.29{\pm}1.94%$이었다. 소동물 PET 극성지도에서는 30% 임계값이 조직학적 데이터와 비교하여 가장 작은 차이를 보였다. 그러나 TTC 염색으로 측정한 크기가 10% 이하에서는 MGMM 방법이 절대치 방법보다 작은 차이를 보였다(MGMM: 0.006%, 절대치방법: 0.59%). 이 연구에서는 심근경색 모델 평가를 위하여 생체영상 극성지도에서 다중가우시안혼합모델을 이용하여 평가하고자 하였다. MGMM은 사용자의 선택 없이도 자동적으로 영상 특성을 고려하여 적응적 임계값을 찾아주는 방법으로 극성지도에서 심근경색을 평가하는데 도움이 될 것으로 기대된다.