• Title/Summary/Keyword: Expectation and Maximization Algorithm

Search Result 161, Processing Time 0.024 seconds

Statistical Algorithm in Genetic Linkage Based on Haplotypes (일배체형에 기초한 연쇄분석의 통계학적 알고리즘 연구)

  • Kim, Jin-Heum;Kang, Dae-Ryong;Lee, Yun-Kyung;Shin, Sun-Mi;Suh, Il;Nam, Chung-Mo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.37 no.4
    • /
    • pp.366-372
    • /
    • 2004
  • Objectives : This study was conducted to propose a new transmission/disequilibrium test(TDT) to test the linkage between genetic markers and disease-susceptibility genes based on haplotypes. Simulation studies were performed to compare the proposed method with that of Zhao et al. in terms of type I error probability and powers. Methods : We estimated the haplotype frequencies using the expectation-maximization(EM) algorithm with parents genotypes taken from a trio dataset, and then constructed a two-way contingency table containing estimated frequencies to all possible pairs of parents haplotypes. We proposed a score test based on differences between column marginals and their corresponding row marginals. The test also involved a covariance structure of marginal differences and their variances. In simulation, we considered a coalescent model with three genetic markers of biallele to investigate the performance of the proposed test under six different configurations. Results : The haplotype-based TDT statistics, our test and Zhao et al.'s test satisfied a type I error probability, but the TDT test based on single locus showed a conservative trend. As expected, the tests based on haplotypes also had better powers than those based on single locus. Our test and that of Zhao et al. were comparable in powers. Conclusion : We proposed a TDT statistic based on haplotypes and showed through simulations that our test was more powerful than the single locus-based test. We will extend our method to multiplex data with affected and/or unaffected sibling(s) or simplex data having only one parent s genotype.

The Removal of Noisy Bands for Hyperion Data using Extrema (극단화소를 이용한 Hyperion 데이터의 노이즈 밴드제거)

  • Han, Dong-Yeob;Kim, Dae-Sung;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.275-284
    • /
    • 2006
  • The noise sources of a Hyperion image are mainly due to the atmospheric effects, the sensor's instrumental errors, and A/D conversion. Though uncalibrated, overlapping, and all deep water absorption bands generally are removed, there still exist noisy bands. The visual inspection for selecting clean and stable processing bands is a simple practice, but is a manual, inefficient, and subjective process. In this paper, we propose that the extrema ratio be used for noise estimation and unsupervised band selection. The extrema ratio was compared with existing SNR and entropy measures. First, Gaussian, salt and pepper, and Speckle noises were added to ALI (Advanced Land Imager) images with relatively low noises, and the relation of noise level and those measures was explored. Second, the unsupervised band selection was performed through the EM (Expectation-Maximization) algorithm of the measures which were extracted from a Hyperion images. The Hyperion data were classified into 5 categories according to the image quality by visual inspection, and used as the reference data. The experimental result showed that the extrema ratio could be used effectively for band selection of Hyperion images.

EM Algorithm based Air Flow and Power Data classification Analysis (EM 알고리즘기반의 공기 유량 및 전력 데이터 분류 분석)

  • Shim, Jae-Ryong;Noh, Young-Bin;Jung, Hoe-kyung;Kim, Yong-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.551-553
    • /
    • 2016
  • Since air compressor, as an essential equipment used in the factory and plant operations, accounts for around 20% of the total domestic electricity consumption, a real time sensor data monitoring based analysis for electricity consumption reduction is important. In particular, flow rates and pressures of these monitored variables has a direct correlation with the power consumption. This paper proposes a method to identify if the measurement error of the flow rate sensor comes from the sensor measurement limit through bivariate classification analysis of the flow rate and power using the EM (Expectation and Maximization) Algorithm and show how to enable more accurate analysis by the correlation between the flow rate and power on the right-censored data.

  • PDF

Real-time passive millimeter wave image segmentation for concealed object detection (은닉 물체 검출을 위한 실시간 수동형 밀리미터파 영상 분할)

  • Lee, Dong-Su;Yeom, Seok-Won;Lee, Mun-Kyo;Jung, Sang-Won;Chang, Yu-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2C
    • /
    • pp.181-187
    • /
    • 2012
  • Millimeter wave (MMW) readily penetrates fabrics, thus it can be used to detect objects concealed under clothing. A passive MMW imaging system can operate as a stand-off type sensor that scans people in both indoors and outdoors. However, because of the diffraction limit and low signal level, the imaging system often suffers from low image quality. Therefore, suitable statistical analysis and computational processing would be required for automatic analysis of the images. In this paper, a real-time concealed object detection is addressed by means of the multi-level segmentation. The histogram of the image is modeled with a Gaussian mixture distribution, and hidden object areas are segmented by a multi-level scheme involving $k$-means, the expectation-maximization algorithm, and a decision rule. The complete algorithm has been implemented in C++ environments on a standard computer for a real-time process. Experimental and simulation results confirm that the implemented system can achieve the real-time detection of concealed objects.

Automatic Estimation of Threshold Values for Change Detection of Multi-temporal Remote Sensing Images (다중시기 원격탐사 화상의 변화탐지를 위한 임계치 자동 추정)

  • 박노욱;지광훈;이광재;권병두
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.465-478
    • /
    • 2003
  • This paper presents two methods for automatic estimation of threshold values in unsupervised change detection of multi-temporal remote sensing images. The proposed methods consist of two analytical steps. The first step is to compute the parameters of a 3-component Gaussian mixture model from difference or ratio images. The second step is to determine a threshold value using Bayesian rule for minimum error. The first method which is an extended version of Bruzzone and Prieto' method (2000) is to apply an Expectation-Maximization algorithm for estimation of the parameters of the Gaussian mixture model. The second method is based on an iterative thresholding algorithm that successively employs thresholding and estimation of the model parameters. The effectiveness and applicability of the methods proposed here were illustrated by two experiments and one case study including the synthetic data sets and KOMPSAT-1 EOC images. The experiments demonstrate that the proposed methods can effectively estimate the model parameters and the threshold value determined shows the minimum overall error.

Effect of the Number of Detectors on Performance of Industrial SPECT (산업용 SPECT의 검출기 개수가 영상 해상도에 미치는 영향 평가)

  • Park, Jang Guen;Kim, Chan Hyeong;Kim, Jong Bum;Moon, Jinho;Jung, Sung-Hee
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.325-330
    • /
    • 2011
  • To predict the details of flow in industrial process unit, single photon emission computed tomography (SPECT) is a promising technique. Recently, industrial SPECT based on medical system has developed by researchers of the Korea Atomic Energy Research Institute (KAERI) and Hanyang University. In the present study, to confirm the effect of the number of detectors on image quality, and determine the optimal number of detectors in industrial SPECT, industrial SPECT system with various geometries were evaluated by the Monte Carlo simulation. CsI(Tl) detectors ($12mm{\times}12mm{\times}20mm$) with collimators (the geometric resolution of collimator $R_g$ was 4 cm at the center of the 30 cm diameter cylindrical vessel object) were modeled in a hexagonal array, and the point sources of $^{99m}Tc$, $^{68}Ga$, and $^{137}Cs$ were simulated at the center of the cylindrical vessel object using the MCNPX code. Then, the reconstruction images of each geometry were reconstructed using the expectation maximization (EM) algorithm. In this study, the reciprocity theorem was used to improve computation time required for system matrix of the EM algorithm. The result shows that the resolution of the reconstructed image was significantly improved by increasing the number of detectors in industrial SPECT system and more than 60 detectors will be required for the resolution of the reconstructed image.

Residual ISI cancellation and EM-based channel estimation for STBC/SFBC OFDM with insufficient cyclic prefix (불충분한 주기적 프리픽스를 갖는 STBC/SFBC OFDM 시스템을 위한 잔재 ISI 제거 기법 및 EM 기반 채널 추정 기법)

  • Won, Hui-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1154-1163
    • /
    • 2007
  • For orthogonal frequency division multiplexing (OFDM), cyclic prefix (CP) should be longer than the length of channel impulse response. In order to prevent a loss of bandwidth efficiency due to the use of a CP, residual intersymbol interference cancellation (RISIC) method has recently been developed. In this paper, we first apply the RISIC algorithm to the space-time block coded (STBC) OFDM and the space-frequency block coded (SFBC) OFDM with insufficient CP. It is shown that in the STBC OFDM, tail cancellation as well as cyclic restoration of the RISIC should be repeated. Second, we propose iterative channel estimation method for the RISIC in the STBC OFDM system with insufficient CP. Based on the expectation-maximization (EM) algorithm, the proposed estimation method exploits the extrinsic probabilities of the channel decoder iteratively. The performance of the proposed method is evaluated by computer simulation in a multipath fading environment.

Haplotype Analysis and Single Nucleotide Polymorphism Frequency of Organic Cation Transporter Gene (OCT1 and 2) in Korean Subjects

  • Kim, Se-Mi;Lee, Sang-No;Yoon, Hwa;Kang, Hyun-Ah;Cho, Hea-Young;Lee, Il-Kwon;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.5
    • /
    • pp.345-351
    • /
    • 2009
  • Organic cation transporters (OCTs) are important for absorption, elimination of many endogenous small organic cations as well as a wide array of drugs and environmental toxins. This gene is located in a cluster on chromosome 6 and OCTs are in major organs such as intestine, liver, kidney, brain and placenta. Therefore, expression levels and function of OCTs directly affect plasma levels and intracellular concentrations of drugs and thereby determine therapeutic response. The aim of this study was to investigate the frequency of the SNPs on OCT1 (C181T and C1022T) and OCT2 (G808T) to analyze haplotype frequency in healthy Korean population. Human subjects have been genotyped for OCT1 (C181T for 195 subjects and C1022T for 825 subjects), using polymerase chain reaction-based diagnostic tests (RFLP). And for OCT2 (G808T), a total of 861 subjects have been genotyped, using pyrosequencing method. Haplotype was statistically inferred using an algorithm based on the expectation-maximization (EM). OCT1 C181T genotyping showed 100% homozygous wild-type (C/C). OCT1 C1022T genotyping showed wild-type (C/C), heterozygous (C/T) and homozygous mutant-type (T/T) and each accounted for 72.1, 24.5 and 3.4%, respectively. OCT2 G808T genotyping results also showed homozygous wild-type (G/G), heterozygous (G/T) and homozygous mutant-type (T/T) and each took 81.8, 17.9 and 0.3%, respectively. Based on these genotype data, haplotype analysis between OCT1 C181T and OCT1 C1022T has proceeded. The result has revealed that linkage disequilibrium between alleles is not obvious (P=0.0122).

Design and experimental characterization of a novel passive magnetic levitating platform

  • Alcover-Sanchez, R.;Soria, J.M.;Perez-Aracil, J.;Pereira, E.;Diez-Jimenez, E.
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.499-512
    • /
    • 2022
  • This work proposes a novel contactless vibration damping and thermal isolation tripod platform based on Superconducting Magnetic Levitation (SML). This prototype is suitable for cryogenic environments, where classical passive, semi active and active vibration isolation techniques may present tribological problems due to the low temperatures and/or cannot guarantee an enough thermal isolation. The levitating platform consists of a Superconducting Magnetic Levitation (SML) with inherent passive static stabilization. In addition, the use of Operational Modal Analysis (OMA) technique is proposed to characterize the transmissibility function from the baseplate to the platform. The OMA is based on the Stochastic Subspace Identification (SSI) by using the Expectation Maximization (EM) algorithm. This paper contributes to the use of SSI-EM for SML applications by proposing a step-by-step experimental methodology to process the measured data, which are obtained with different unknown excitations: ambient excitation and impulse excitation. Thus, the performance of SSI-EM for SML applications can be improved, providing a good estimation of the natural frequency and damping ratio without any controlled excitation, which is the main obstacle to use an experimental modal analysis in cryogenic environments. The dynamic response of the 510 g levitating platform has been characterized by means of OMA in a cryogenic, 77 K, and high vacuum, 1E-5 mbar, environment. The measured vertical and radial stiffness are 9872.4 N/m and 21329 N/m, respectively, whilst the measured vertical and radial damping values are 0.5278 Nm/s and 0.8938 Nm/s. The first natural frequency in vertical direction has been identified to be 27.39 Hz, whilst a value of 40.26 Hz was identified for the radial direction. The determined damping values for both modes are 0.46% and 0.53%, respectively.

Haplotype Analysis and Single Nucleotide Polymorphism Frequency of PEPT1 Gene (Exon 5 and 16) in Korean (한국인에 있어서 PEPT1 유전자(exon 5 및 16)의 단일염기변이 빈도 및 일배체형 분석)

  • Kim, Se-Mi;Lee, Sang-No;Kang, Hyun-Ah;Cho, Hea-Young;Lee, Il-Kwon;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.6
    • /
    • pp.411-416
    • /
    • 2009
  • The aim of this study was to investigate the frequency of the SNPs on PEPT1 exon 5 and 16 and to analyze haplotype frequency on PEPT1 exon 5 and 16 in Korean population. A total of 519 healthy subjects was genotyped for PEPT1, using pyrosequencing analysis and polymerase chain reaction-based diagnostic tests. Haplotype was statistically inferred using an algorithm based on the expectation-maximization (EM). PEPT1 exon 5 G381A genotyping revealed that the frequency for homozygous wild-type (G/G), heterozygous (G/A) and homozygous mutant-type (A/A) was 30.4, 53.4 and 16.2%, respectively. PEPT1 exon 16 G1287C genotyping revealed that the frequency for homozygous G/G, heterozygous G/C and homozygous C/C type was 88.8, 10.0 and 1.2%, respectively. Based on these genotype data, haplotype analysis between PEPT1 exon 5 G381A and exon 16 G1287C using HapAnalyzer and PL-EM has proceeded. The result has revealed that linkage disequilibrium between alleles is not obvious (|D'|=0.3667).