• Title/Summary/Keyword: Expansive mortar

Search Result 45, Processing Time 0.028 seconds

The Strength Property with Restrained Effects of the Expansive Mortar (팽창 모르터의 구속효과에 따른 강도특성)

  • Park, Min-Soo;Kim, Hyun-Soo;Park, Chun-Young;Kang, Byung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.53-56
    • /
    • 2006
  • The objection of this study is to investigate the properties of cement mortar with the kinds and addition of expansive additives. 3 kinds of expansive additives produced in our country and 0, 5, 10, 15, 20% of ratio of addition rate are selected for this experiment. According to experimental results, flow of cement mortar with expansive additives is nearly same with flow of plain mortar and compressive strength, tensile strength, bend strength of cement mortar with expansive additives at 28 days is higher than that of plain mortar.

  • PDF

An Experimental Study on the Bearing Characteristics of Auger-Cast Pile Installed Using Expansive Mortar

  • Yoon, Sung-Soo;Lee, Won-Je;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.99-111
    • /
    • 1999
  • The frictional capacity of auger-cast piles is often very small because of the disturbance of the soil surrounding the pile during the excavation process. Usage of expansive agents and a pressurized injection technique for auger-cast piles should improve the frictional resistance between pile and soil. This paper presents the test results of auger-cast model piles installed with expansive mortar in laboratory compacted weathered soil. The model piles were installed in a calibration chamber with a variation in the amount of expansive agent, the injection process and the chamber pressure. It was observed that the pile shaft resistance increases with the increased amount of expansive agent, and also increases when mortar is pressure injected. The shaft resistance increased up to 24% for the pile installed only with expansive mortar and increased up to 56% for the pile installed with the pressurized injection of expansive mortar, compared with that of piles with plain mortar.

  • PDF

A Study on the Expansive Properties With Particle Size Distribution of Expansive Additives in Mortar (팽창제의 입도분포에 따른 팽창특성에 대한 기초연구)

  • 이종열;이웅종;박정준;박경상;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.151-156
    • /
    • 1998
  • Concrete structures is appeared the shrinkage after being harden of the hydration effect of cement. To overcome this disadvantage, expansive additives are used. In our country, the most popular expansive additives are hauyne(CSA) or free lime(free-CaO) systems. These expansive additives are used to expansive cement mortar or concrete materials. In this study, we analyzed the expansive property mechanism about the hydration reaction of the free lime systems and in particular we convinced size distributions of the free lime size affect the expansion ratio with expansion ratio with experiments. We carried out the experiment for the expansive properties by using the soundness molds and with various the humidity and dry setting conditions. The hydration reactions of the free lime affect the reaction properties according to the relative humidity by laboratory experiments.

  • PDF

A Study on the Dry-Shrinkage Properties For Floor Mortar With Crack-Reducing (균열저감형 바닥마감전용 모르터의 건조수축특성 연구)

  • 이종렬;이웅종;채재홍;박경상;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.175-180
    • /
    • 1999
  • The heating system of korea apartment house is called Ondol. The surface finishing mortar of this floor system typically used the cement based mortar, where the surface finishing mortar easily appears the crack. To order to crack control, the cement that added expansive additive used to reducing dry-shrinkage. For the surface finishing mortar, the types of shrinkage is known as plastic shrinkage, dry-shrinkage and autogenous This experimental study is to investigate the difference on dry-shrinkage of the cement that added expansive additives and OPC. The test method is varied the ration of water/cement (W/C) and the ratio of sand/cement(S/C). For OPC, The increase of the ratio of S/C is reduced dry-shirnkage but for the cement that added expansive additives, the increase of the ratio of S/C is augmented dry-shrinkage For OPC, The increase of the ratio of W/C is augmented dry-shrinkage but for the cement that added expensive, the increased of the ratio of W/C is reduced dry-shrinkage.

  • PDF

A Study on the Properties of Cement Mortar with the Content of Expansive Additives Under Various Curing Method (팽창재량 및 양생방법에 따른 시멘트 모르터의 특성에 관한 연구)

  • 한성수;김정진;김효구;홍상희;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.181-186
    • /
    • 1999
  • When the expansive additives are used in concrete to reduce the shrinkage cracking, it shows variable properties with the curing method and curing temperature. Therefore, in this study, the experiments are perfomed to present the expansion of cement mortar by varying the unit additions of expansive additives and the curing method. According to the test results, the order of expansion by curing method, which is caused by hydration heat of cement, is follows ; curing at water > curing at air after curing at water for 7 days > curing at air. Cement mortar using expansive additives shows that high expansion is place with rise of temperature.

  • PDF

Strength Properties of Epoxy-Modified Mortars with Expansive and Swelling Agents (팽창재 및 팽윤재를 병용한 에폭시수지 혼입 시멘트 모르타르의 강도특성)

  • Ham, Seong-Min;Kim, Joo-Young;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.288-289
    • /
    • 2014
  • The purpose of this research is to examine strength properties of epoxy-modified mortar with expansive and swelling agent contents. The polymer-modified mortars (PMMs) using epoxy resin are prepared with various polymer-binder ratios, expansive and swelling agent contents. The PMMs using epoxy resin are tested for compressive, flexural and tensile strengths. As a result, the strength properties of the PMMs using epoxy resin are depending on the polymer-binder ratio rather than expansive and swelling agent content, and are remarkably improved over unmodified mortar (UMM).

  • PDF

Properties of Undispersed Underwater Mortar Using the Expansive Additives and Fly Ash (팽창재 및 플라이애쉬를 이용하는 수중불분리 모르터의 특성)

  • 한천구;이대주;이광설;한일영;권지훈;유홍종
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.223-231
    • /
    • 1998
  • Existing cast in place piles made by grouting cement mortar have many problems that cracks by autogeneous and drying shrinkage bring about the deterioration of force for piles, segregations by the submersion of ground water occur and also, high cement contents lead to rise the manufacturing cost. Therefore, this study is intended to investigate the mechanical properties of high performance mortar, incorporating expansive additives and fly ash. for cast in place piles. According to the experimental results, as the contents of expansive additives increase in mortar mixture, fluidity decrease and air contents shows inverse tendency. Setting time is delayed. Although compressive strength at 7days shows a decline tendency. compressive strength at 28days and 91days increase slightly with 5% of expansive additives. As fly ash increase in mortar mixture, high fluidity is shown, air contents increase and setting time is delayed at fresh state, and additives are, the larger length change is, whereas shrinkage decrease with the increase of fly ash.

A Study on the Quality Properties of the Expansive For Dry-Shrinkage Compensation of the Floor Mortar (온돌바닥 모르터의 건조수축보상을 위한 팽창제의 품질특성 연구)

  • 이웅종;이종열;정연식;이순기;정성철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.155-160
    • /
    • 2000
  • In this paper, we investigated quality properties for the expansive of the CaO-$CaSO_4$ family which used to compensate dry-shrinkage in the floor mortar of On-Dol heating System. This experimental study established the mix condition with quantity of the expansive and is to investigate the relativity between the compress strength and the length change and the relativity between the chemical properties and the length change with the analysis of the physical and chemical properties. As a result of the study, the expansive is controlled by more the CaO than the $CaSO_4$. The relativity between the compress strength and the length change is expressed by exponential function, showing that if the expansive performance is increased, the compress strength is decreased. And the relativity between the chemical properties and the length change is only relative the quantity of the F-CaO among the chemical properties, is expressed by the second order function, showing that if the F-CaO is increased, the expansive performance is increased.

  • PDF

Effect of Curing Conditions on Compressive Strength of Dry Mortar for Floor (양생 조건이 바닥용 건조 모르타르의 압축강도에 미치는 영향)

  • Jung, Yong;Kim, Du-Hyouk;Park, Chang-Hwan;Cho, Sung-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.377-378
    • /
    • 2023
  • This study examined the effect of curing conditions on the compressive strength of dry mortar for floor. The compressive strength according to the relative humidity during curing was compared, and the influence of expansive additives on compressive strength under water curing was reviewed. As a result, low relative humidity conditions during curing was not effective in improving the compressive strength of dry mortar for floor, and it was judged that the continuous hydration reaction insufficient due to lack of the moisture supply. In order to improve compressive strength, high relative humidity maintenance was found to be an important factor. However, under water curing conditions, the compressive strength has decreased as a result of continuous volume expansion due to the use of the expansive additives.

  • PDF