• 제목/요약/키워드: Expansion-Deflection

검색결과 79건 처리시간 0.022초

열간 연속판재 압연기의 작업롤 전동피로해석 (Analysis of the Rolling Contact Fatigue for Work Roll in Finishing Mill of Hot Strip Rolling)

  • 배원병;박해두;송길호
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.292-300
    • /
    • 1995
  • According to the number of cold-rolled coils, the amount of roll wear and thermal expansion, and roll gap profile were calculated, by using the actual data from the finishing mill. Also, based on those data, the calculations of the deflection, the flattening, and the contact pressure of vwork rolls and backup rolls were made respectively. Specially, in the calculation of contact pressure, the numerical results were obtained not only during the normal rolling, but also during the abnormal rolling, by modeling mathematically the dynamic impact force which occurs when the head section of the strip is threading through rolls. With those results the growth of the fatigue region and the fatigue damage of rolls were predicted. Also the optimum roll-grinding depth was determined to maximize the roll life.

DESIGN OF A BENDING MAGNET FOR THE KSTAR NBI SYSTEM

  • In, Sang-Ryul;Yoon, Byeong-Joo;Kim, Beom-Yeol
    • Nuclear Engineering and Technology
    • /
    • 제38권8호
    • /
    • pp.793-802
    • /
    • 2006
  • The design concept of a bending magnet to be installed in the KSTAR NBI system is presented. It is the function of a bending magnet that removes unconverted ions from the main beam stream and produces an 8 MW, 120 keV deuterium neutral beam. In order to determine the proper size and shape of the bending magnet, a parametric study on the B-field pattern was carried out by changing the dimensions of the pole face model. In addition, the detailed trajectories of the dominant ion species produced in the beam line were calculated. The electrical and cooling parameters of the coil assembly were also estimated.

플라즈마 용사법에 의한 지르코니아 코팅에서의 잔류응력에 대한 연구 (Residual stresses on plasma sprayed zirconia coatings)

  • 류지호;강춘식
    • Journal of Welding and Joining
    • /
    • 제7권4호
    • /
    • pp.46-55
    • /
    • 1989
  • Zirconia coatings are performed by the plasma spraying on the substrate of Al-Si alloy. In case of plasma sprayed ceramic coatings, it is important to control properly residual stress occurred during cooling process. Residual stress in coating layer varies with sprayed conditions and is influenced greatly by the coating layer thickness. Surface residual stress due to coating layer thickness is measured by X-ray diffraction method and the residual stress in coating layer is estimated by the deflection of coating layer when the restraint force in substrate was removed. When zirconia was coated on the substrate, tensile residual stress remains on zirconia coated surface layer. The tensile stress is increased to 0.35mm thickness and after 0.45mm thickness it is decreased abrouptly. A thick bond and composite coating reduce the zirconia surface stress and composite coating controls effectively the thick zirconia surface stress.

  • PDF

Performance of steel beams at elevated temperatures under the effect of axial restraints

  • Liu, T.C.H.;Davies, J.M.
    • Steel and Composite Structures
    • /
    • 제1권4호
    • /
    • pp.427-440
    • /
    • 2001
  • The growing use of unprotected or partially protected steelwork in buildings has caused a lively debate regarding the safety of this form of construction. A good deal of recent research has indicated that steel members have a substantial inherent ability to resist fire so that additional fire protection can be either reduced or eliminated completely. A performance based philosophy also extends the study into the effect of structural continuity and the performance of the whole structural totality. As part of the structural system, thermal expansion during the heating phase or contraction during the cooling phase in most beams is likely to be restrained by adjacent parts of the whole system or sub-frame assembly due to compartmentation. This has not been properly addressed before. This paper describes an experimental programme in which unprotected steel beams were tested under load while it is restrained between two columns and additional horizontal restraints with particular concern on the effect of catenary action in the beams when subjected to large deflection at very high temperature. This paper also presents a three-dimensional mathematical modelling, based on the finite element method, of the series of fire tests on the part-frame. The complete analysis starts with an evaluation of temperature distribution in the structure at various time levels. It is followed by a detail 3-D finite element analysis on its structural response as a result of the changing temperature distribution. The principal part of the analysis makes use of an existing finite element package FEAST. The effect of columns being fire-protected and the beam being axially restrained has been modelled adequately in terms of their thermal and structural responses. The consequence of the beam being restrained is that the axial force in the restrained beam starts as a compression, which increases gradually up to a point when the material has deteriorated to such a level that the beam deflects excessively. The axial compression force drops rapidly and changes into a tension force leading to a catenary action, which slows down the beam deflection from running away. Design engineers will be benefited with the consideration of the catenary action.

고도 보정용 확장-굴절(E-D) 노즐의 국외 연구 동향 (Research Trends of an E-D Nozzle for Altitude Compensation)

  • 문태석;박상현;최준섭;허환일
    • 한국항공우주학회지
    • /
    • 제45권10호
    • /
    • pp.844-854
    • /
    • 2017
  • E-D 노즐은 고도에 따라 노즐 내의 유효 면적을 변화시켜 고도 보정 효과를 통해 성능 이득을 가지는 노즐이다. E-D 노즐은 노즐의 길이를 절감시켜 발사체의 탑재중량이득을 얻을 수 있다고 알려져 있는데, 이러한 E-D 노즐의 장점과 잠재적인 가능성 때문에 영국, 독일, 호주, 유럽 등에서 관련된 연구가 수행되었다. 영국의 경우 E-D 노즐의 유동 특성과 고도 보정 노즐 중 듀얼 벨 노즐과의 성능 비교 연구를 수행하였고, DLR에서는 E-D 노즐의 천이 특성을 파악하기 위해 노즐 압력비 변화에 따른 천이 특성을 중점적으로 분석하였다. 유럽에서는 실제 발사체 Ariane 5 ESC-B 상단에 E-D 노즐 개념을 적용한 수치적 연구를 수행하여 노즐 길이 절감에 따른 탑재중량이득 가능성을 확인하였다. 본 논문에서는 국외에서 수행한 E-D 노즐의 연구 동향을 특징 별로 분류 및 분석하였고, 향후 E-D 노즐 연구의 기초 자료로 활용하고자 한다.

Mechanical and hygrothermal behaviour of functionally graded plates using a hyperbolic shear deformation theory

  • Laoufi, Imene;Ameur, Mohammed;Zidi, Mohamed;Bedia, El Abbes Adda;Bousahla, Abdelmoumen Anis
    • Steel and Composite Structures
    • /
    • 제20권4호
    • /
    • pp.889-911
    • /
    • 2016
  • Using the hyperbolic shear deformation plate model and including plate-foundation interaction (Winkler and Pasternak model), an analytical method in order to determine the deflection and stress distributions in simply supported rectangular functionally graded plates (FGP) subjected to a sinusoidal load, a temperature and moisture fields. The present theory exactly satisfies stress boundary conditions on the top and the bottom of the plate. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain is given. Materials properties of the plate (elastic, thermal and moisture expansion coefficients) are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. Numerical examples are presented and discussed for verifying the accuracy of the present theory in predicting the bending response of FGM plates under sinusoidal load and a temperature field as well as moisture concentration. The effects of material properties, temperature, moisture, plate aspect ratio, side-to-thickness ratio, ratio of elastic coefficients (ceramic-metal) and three distributions for both temperature and moisture on deflections and stresses are investigated.

석탄회 고형물의 파괴특성에 관한 실험적 연구 (Experiment Study for Fracture Characterist of the Ash solid)

  • 조병완;박종빈;김효원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.335-340
    • /
    • 2002
  • By the recently, Environmental pollution is serious by the highly economic growth and expansion of lively country basic industry. Especially, in case of industrial waste and life waste leaped into a pollution source. Also, research for processing of waste and recycling countermeasure is a pressing question on national dimension because it is prohibited an ocean disposal and reclamation. In this study, it looked for fracture characteristic value of recycling a coal ash to decrease environmental pollution by picky and exhaustion of natural resources and to reduce self-weight to prepare for a tall building and earthquake. So a coal ash examined to be possible to do as construction material. It achieved compressive strength test and three points bending test with initial notch depth rate and age for variables to show a basic research data. From the basis of the three points bending test, the fracture parameters - notch sensitivity, fracture energy, initial compliance were experimentally proposed. From the results of the compressive strength test, the elastic modulus was experimentally proposed. Also on the basis of the three points bending test, the fracture parameters - notch sensitivity, fracture energy, initial compliance were experimentally proposed. The results that the strength and fracture energy value are lower than concrete or mortar is described in this paper. Also, it shows that the deflection at fracture decreases as the age increases and the notch sensitivity decrease. However, it is judged to be available to construction material if research is continuously gone forward.

  • PDF

FEM을 이용한 RECTANGULAR CAN 후방압출 해석 (Rectangular can backward extrusion analysis using FEM)

  • 이상승;조규종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.699-702
    • /
    • 2001
  • The increasing demand in industry to produce rectangular cans at the reduction by the rectangular backward extrusion process involves better understanding of this process. In 2-D die deflection and dimensional variation of the component during extrusion, punch retraction, component injection and cooling was conducted using a coupled thermal-mechanical approach for the forward extrusion of aluminum alloy and low-carbon steel in tools of steel. Backward extrusion FE simulation and experimental simulation by physical modeling using wax as a model material have been performed. These simulations gave good results concerning the prediction of th flow modes and the corresponding surface expansions of the material occuring at the contact surface between the can and the punch. There prediction are the limits of the can height, depending on the reduction, the punch geometry, the workpiece material and the friction factor, in order to avoid the risk of damage caused by sticking of the workpiece material to the punch face. The influence of these different parameter on the distribution of the surface expansion along the inner can wall and bottom is already determined. This paper deals with the influence of the geometry changes of the forming tool and the work material in the rectangular backward using the 3-D finite element method.

  • PDF

초기분말의 결정상이 $Al_2O_3$를 소결 조제로한 고온가압 SiC 세라믹스의 기계적 특성에 미치는 영향 (Effect of Starting Crystallographic Phase on the Mechanical Properties of Hot-Pressed SiC Ceramics)

  • 정동익;강을손;최원봉;백용기
    • 한국세라믹학회지
    • /
    • 제29권3호
    • /
    • pp.232-240
    • /
    • 1992
  • Densification behavior, microstructural evolution, and mechanical properties of hot-pressed specimens using $\beta$-SiC and $\alpha$-SiC powder with Al2O3 additive were studied. Beta-SiC powder was fully densified as 205$0^{\circ}C$, but $\alpha$-SiC powder was at 210$0^{\circ}C$. The maximum flexural strength and the fracture toughness of the specimen hot-pressed using $\beta$-SiC powder were 681 MPa and 6.7 MPa{{{{ SQRT {m } }}, and thosevalues of specimen hot-pressed using $\alpha$-SiC powder were 452 MPa and 4.7 MPa{{{{ SQRT {m } }}, respectively. The strength superiority of specimen hot-pressed using $\beta$-SiC powder was due to the finer grain size, and higher density. The higher toughness of specimen hot-pressed using $\beta$-SiC powder than $\alpha$-SiC powder than $\alpha$-SiC powder was due to the crack deflection mechanism arised from the difference of thermal expansion coefficient between $\alpha$ and $\beta$-SiC phases which were co-existed in the sintered body.

  • PDF

$Al_2O_3/SiC$ Hybrid-Composite에서 SiC에 질화물 코팅의 영향 (The Effect of Nitride Coating on SiC Platelet in $Al_2O_3/SiC$ Hybrid-Composite)

  • 이수영;임경호;전병세
    • 한국세라믹학회지
    • /
    • 제34권4호
    • /
    • pp.406-412
    • /
    • 1997
  • Al2O3/SiC hybrid-composite has been fabricated by the conventional powder process. The addition of $\alpha$-Al2O3 as seed particles in the transformation of ${\gamma}$-Al2O3 to $\alpha$-Al2O3 provided a homogeneity of the microstructure. The grain growth of Al2O3 are significantly surpressed by the addition of nano-size SiC particles. Dislocation were produced due to the difference of thermal expansion coefficient between Al2O3 and SiC and piled up on SiC particles in Al2O3 matrix, resulting in transgranular fracture. The high fracture strength of the composite was contributed to the grain refinement and the transgranular fracture mode. The addition of SiC platelets to Al2O3/SiC nano-composite decreased the fracture strength, but increased the fracture toughness. Coated SiC platelets with nitrides such as BN and Si3N4 enhanced fracture toughness much more than non-coated SiC platelets by enhancing crack deflection.

  • PDF