• Title/Summary/Keyword: Expansion material

검색결과 1,221건 처리시간 0.022초

지반공동 긴급복구 재료의 팽창 및 강도특성에 관한 연구 (A Study on Expansion and Strength Characteristics of Material for Emergency Restoration in Ground Cavity)

  • 한진규;유용선;김동욱;박정준;홍기권
    • 한국지반신소재학회논문집
    • /
    • 제16권2호
    • /
    • pp.131-138
    • /
    • 2017
  • 본 연구에서는 지반함몰을 유발하는 지반 내 공동 긴급복구 재료에 대한 팽창 및 일축압축강도 실험을 수행하였으며, 실험결과를 바탕으로 주제-경화제 구성비와 주제 내 발포제-촉진제 배합비에 따른 팽창 및 강도특성을 분석하였다. 먼저, 경화시간-팽창률 관계를 분석한 결과, 주제에 포함된 발포제와 촉진제 배합조건에 상관없이, 경화제의 비율이 높으면, 경화시간을 단축하면서 팽창률을 감소시키는 것으로 평가되었다. 이는 주제-경화제 구성비가 팽창률에 큰 영향을 미치는 것을 의미한다. 팽창재료의 강도특성을 분석한 결과, 발포제와 촉진제 배합비가 팽창재료 강도에 큰 영향을 미치는 것으로 확인되었다. 따라서 긴급복구가 요구되는 경우, 공동의 크기 및 형태 등에 따라 팽창재료의 소요 주입시간, 팽창률 및 요구강도를 고려한 주제-경화제 구성비, 주제 내 발포제-촉진제 배합비의 적용이 필요함을 확인하였다.

전기저항식 변형률 게이지를 이용한 콘크리트의 열팽창계수 측정법 (Coefficient of Thermal Expansion Measurement of Concrete using Electrical Resistance Strain Gauge)

  • 남정희;안덕순;김연복
    • 한국도로학회논문집
    • /
    • 제15권6호
    • /
    • pp.25-32
    • /
    • 2013
  • PURPOSES : The purpose of this study is to provide the method of how to measure the coefficient of thermal expansion of concrete using temperature compensation principle of electrical resistance strain gauge. METHODS : The gauge factor compensation method and thermal output(temperature-induced apparent strain) correction method of self-temperature compensation gauge were investigated. From the literature review, coefficient of thermal expansion measurement method based on the thermal output differential comparison between reference material(invar) and unknown material(concrete) was suggested. RESULTS : Thermal output is caused by two reasons; first the electrical resistivity of the grid conductor is changed by temperature variation and the second contribution is due to the differential thermal expansion between gauge and the test material. Invar was selected as a reference material and it's coefficient of thermal expansion was measured as $2.12{\times}10^{-6}m/m/^{\circ}C$. by KS M ISO 11359-2. The reliability of the suggested measurement method was evaluated by the thermal output measurement of invar and mild steel. Finally coefficient of thermal expansion of concrete material for pavement was successfully measured as $15.45{\times}10^{-6}m/m/^{\circ}C$. CONCLUSIONS : The coefficient of thermal expansion measurement method using thermal output differential between invar and unknown concrete material was evaluated by theoretical and experimental aspects. Based on the test results, the proposed method is considered to be reasonable to apply for coefficient of thermal expansion measurement.

연성파괴기준을 이용한 허브홀 확장과정에서의 파단 예측 (Prediction of fracture in Hub-hole Expansion Process Using Ductile fracture Criteria)

  • 고윤기;이종섭;허훈;김홍기;박성호
    • 소성∙가공
    • /
    • 제14권7호
    • /
    • pp.601-606
    • /
    • 2005
  • A hole expansion process is an important process in producing a hub-hole in a wheel disc of a vehicle. In this process, the main parameter is the formability of a material that is expressed as the hole expansion ratio. In the process, a crack is occurred in the upper edge of a hole as the hole is expanded. Since prediction of the forming limit by hole expansion experiment needs tremendous time and effort, an appropriate fracture criterion has to be developed for finite element analysis to define forming limit of the material. In this paper, the hole expansion process of a hub-hole is studied by finite element analysis with ABAQUS/standard considering several ductile fracture criteria. The fracture mode and hole expansion ratio are compared with respect to the various fracture criteria. These criteria do not predict its fracture mode or hole expansion ratio adequately and show deviation from experimental results of hole expansion. A modified ductile fracture criterion is newly proposed to consider the deformation characteristics of a material accurately in a hole expansion process. A fracture propagation analysis at the hub-hole edge is also performed for high accuracy of prediction using the new fracture criterion proposed.

기상과 재료 특성에 의한 공항 콘크리트 포장 팽창줄눈 간격의 적정성 검토 (Propriety Examination of Expansion Joint Spacing of Airport Concrete Pavement by Weather and Material Characteristics)

  • 박해원;정진훈
    • 한국도로학회논문집
    • /
    • 제20권3호
    • /
    • pp.65-73
    • /
    • 2018
  • PURPOSES : In this study, the propriety of expansion joint spacing of airport concrete pavement was examined by using weather and material characteristics. METHODS : A finite element model for simulating airport concrete pavement was developed and blowup occurrence due to temperature increase was analyzed. The critical temperature causing the expansion of concrete slab and blow up at the expansion joint was calculated according to the initial vertical displacement at the joint. The amount of expansion that can occur in the concrete slab for 20 years of design life was calculated by summing the expansion and contraction by temperature, alkali-silica reaction, and drying shrinkage. The effective expansion of pavement section between adjacent expansion joints was calculated by subtracting the effective width of expansion joint from the summation of the expansion of the pavement section. The temperature change causing the effective expansion of pavement section was also calculated. The effective expansion equivalent temperature change was compared to the critical temperature, which causes the blowup, according to expansion joint spacing to verify the propriety of expansion joint applied to the airport concrete pavement. RESULTS : When an initial vertical displacement of the expansion joint was 3mm or less, the blowup never occurred for 300m of joint spacing which is used in Korean airports currently. But, there was a risk of blow-up when an initial vertical displacement of the expansion joint was 5mm or more due to the weather or material characteristics. CONCLUSIONS : It was confirmed that the intial vertical displacement at the expansion joint could be managed below 3mm from the previous research results. Accordingly it was concluded that the 300m of current expansion joint spacing of Korean airports could be used without blowup by controling the alkali-silica reaction below its allowable limit.

알루미늄 합금을 이용한 후방압출에 의한 캔 성형시 성형 조건이 표면확장과 접촉 압력에 미치는 영향 (Influences of Process Conditions on the Surface Expansion and Contact Pressure in Backward Can Extrusion of Al Alloys)

  • 민경호;서정민;구훈서;비스라;탁상현;이인철;황병복
    • 소성∙가공
    • /
    • 제16권7호
    • /
    • pp.521-529
    • /
    • 2007
  • This paper is concerned with the analysis on the surface expansion of AA 2024 and AA 1100 aluminum alloys in backward extrusion process. Due to heavy surface expansion appeared usually in the backward can extrusion process, the tribological conditions along the interface between the material and the punch land are very severe. In the present study, the surface expansion is analyzed especially under various process conditions. The main goal of this study is to investigate the influence of degree of reduction in height, geometries of punch nose, friction and hardening characteristics of different aluminum alloys on the material flow and thus on the surface expansion on the working material. Two different materials are selected for investigation as model materials and they are AA 2024 and AA 1100 aluminum alloys. The geometrical parameters employed in analysis include punch corner radius and punch nose angle. The geometry of punch follows basically the recommendation of ICFG and some variations of punch geometry are adopted to obtain quantitative information on the effect of geometrical parameters on material flow. Extensive simulation has been conducted by applying the rigid-plastic finite element method to the backward can extrusion process under different geometrical, material, and interface conditions. The simulation results are summarized in terms of surface expansion at different reduction in height, deformation patterns including pressure distributions along the interface between workpiece and punch, comparison of surface expansion between two model materials, geometrical and interfacial parametric effects on surface expansion, and load-stroke relationships.

레이디얼 압출과 연계된 후방압출의 소재유동과 표면확장 (Material Flow and Surface Expansion in Radial-Backward Extrusion)

  • 고병두;최호준;장동환;황병복
    • 소성∙가공
    • /
    • 제12권3호
    • /
    • pp.251-258
    • /
    • 2003
  • The paper deals with an analysis of an extrusion process with a divided material flow in a combined radial - backward extrusion. The paper discusses the influences of tool geometry such as punch nose angle, relative gap height, die comer radius on material flow and surface expansion into can and flange region. To analyze the process, numerical simulations by the FEM and experiment, an Al alloy as a model material have been performed. Based on the results, the influence of design parameters on the distribution of divided material flow and surface expansion are obtained.

휠트래킹 시험을 통한 포켓형 지반공동 긴급복구 팽창재료의 거동특성 평가 (Evaluation on Behavior Characteristics of a Pocketable Expansion Material for Ground Cavity Based on Wheel Tracking Test Results)

  • 박정준;김주호;김기성;김동욱;홍기권
    • 한국지반신소재학회논문집
    • /
    • 제17권1호
    • /
    • pp.75-83
    • /
    • 2018
  • 본 연구에서는 지반 내 공동에 대하여 긴급복구가 필요한 경우를 대상으로 개발된 포켓형 팽창재료의 거동특성을 분석하고자, 휠트래킹 시험을 통한 동적안정도 및 일축압축강도시험을 이용한 강도특성을 평가하였다. 휠트래킹 시험 결과, 높은 하중조건에서 포켓형 팽창재료로 복구된 지반은 모래지반에 비하여 침하량 증가율이 감소하였다. 즉, 포켓형 팽창재료는 재료의 강성으로 침하억제효과를 나타내는 것으로 확인되었으며, 이는 동적안정도 평가결과에서도 동일하게 나타났다. 휠트래킹 시험 전 후의 일축압축강도시험 결과로부터 공동 긴급복구용 포켓형 팽창재료는 복구된 지반 상부의 하중지지역할이 충분히 가능한 것으로 평가되었다.

증용량 송전선 강심용 저열팽창 Fe-Ni-Co 합금에 있어서 용체화처리 영향 (Effect of Heat-treatment in Low Thermal Expansion Coefficient Fe-Ni-Co alloy for Core Material of Increased Capacity Transmission Line)

  • 김봉서;유경재;김병걸;이희웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.950-952
    • /
    • 2000
  • Considering the effective distribution coefficient of Ni in Fe-Ni-Co invar alloy containing a little amount of carbon, we investigated on the thermal expansion coefficient(${\alpha}$). Fe-Ni-Co invar alloy had a large thermal expansion coefficient in as-casted compared with solution treated. The thermal expansion coefficient of Fe-Ni-Co alloy increased with the carbon content in both state of as-casted and solution treated. The effective distribution coefficient(Ke$\^$Ni/) of Ni was smaller than unity in alloy of not containing carbon, but is way larger than unity in alloy of containing carbon. It was considered that the homogeneity of Ni in primary austenite affected thermal expansion coefficient.

  • PDF

새로운 연성파괴기준을 이용한 허브홀 확장과정에서의 파단 예측 (Prediction of fracture in hub-hole expansion process using new ductile fracture criterion)

  • 고윤기;이종섭;김홍기;박성호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.163-166
    • /
    • 2005
  • A hole expansion process is an important process in producing a hub-hole in a wheel disc of a vehicle. In this process, the main parameter is the formability of a material that is expressed as the hole expansion ratio. The hub-hole expansion process is different from conventional forming processes or hole flanging processes from the view-point of its deformation mode and forming of a thick plate. In the process, a crack is occurred in the upper edge of a hole as the hole is expanded. Since prediction of the forming limit by hole expansion experiment needs tremendous time and effort, an appropriate fracture criterion has to be developed fur finite element analysis to define forming limit of the material. In this paper, the hole expansion process of a hub-hole is studied by finite element analysis with ABAQUS/standard considering several ductile fracture criteria. The fracture mode and hole expansion ratio is compared with respect to the various fracture criteria. These criteria do not predict its fracture mode or hole expansion ratio adequately and show deviation from experimental results of hole expansion. A modified ductile fracture criterion is newly proposed to consider the deformation characteristics of a material accurately in a hole expansion process. A fracture propagation analysis at the hub-hole edge is also performed for high accuracy of prediction using the new fracture criterion proposed.

  • PDF

전부도재관 제작용 침투유리의 열팽창계수의 결정 (The Decision on the Thermal Expansion Coefficient of the Glass Infiltrated in All Ceramic Crown)

  • 김병수;이득용;김학관;장주웅
    • 한국세라믹학회지
    • /
    • 제40권1호
    • /
    • pp.93-97
    • /
    • 2003
  • 치과용 재료를 포함한 생체재료로 각광을 받고 있는 알루미나-유리복합체에 사용되는 유리침투재의 적정 조성은 열팽창계수가 중요 인자로, 적합한 열팽창계수를 가지는 적정 조성 유리 개발을 효율적으로 달성하기 위하여 다구치 실험계획법을 도입하였다. 이러한 방법을 이용하여 유리 침투재의 열팽창에 가장 많은 영향을 미치는 알칼리 산화물과 알칼리 토류 산화물의 영향을 관찰하였다. 치과용 유리침투재의 제성분들을 고려할 때 유리의 열팽창계수에 미치는 영향은 $Na_2$O≫K$_2$O≫MgO≒CaO의 순서로 $Na_2$O의 영향력은 MgO, CaO의 약 8배로 나타났으며 $K_2$O의 영향력은 MgO, CaO의 약 4배로 계산되었다. 또 각 인자간의 교호작용(interaction affects) 중 $K_2$O-CaO의 교호 작용이 가장 유의하게 나타났으며 각 인자와 교호 작용의 수준별 기여율을 계산하여 특성 조성의 열팽창 특성치를 예측하였다.