• Title/Summary/Keyword: Expansion material

Search Result 1,221, Processing Time 0.029 seconds

A Study on Expansion and Strength Characteristics of Material for Emergency Restoration in Ground Cavity (지반공동 긴급복구 재료의 팽창 및 강도특성에 관한 연구)

  • Han, Jin-Gyu;Ryu, Yong-Sun;Kim, Dongwook;Park, Jeong-Jun;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.131-138
    • /
    • 2017
  • In this study, the expansion and compressive strength tests of emergency restoration material were carried out to restore cavity causing ground subsidence. The expansion and compressive strength characteristics according to component ratio of main material - hardener and mix proportion of blowing agent - accelerator were analyzed based on the test results. As a result of the relationship of curing time - expansion ratio analyses, it confirmed that expansion ratio decreased with reduced curing time regardless of mix proportion of blowing agent - accelerator in main material, if component ratio of hardener increased. This means that component ratio of the main material - hardener had greatly affected the expansion ratio. The compressive strength characteristics of emergency restoration material confirmed that strength was affected by mix proportion of blowing agent - accelerator. Therefore, it is necessary to apply reasonable component ratio and mix proportion to consider the required injection time, expansion ratio and strength of restoration material, when emergency restoration in ground cavity is required.

Coefficient of Thermal Expansion Measurement of Concrete using Electrical Resistance Strain Gauge (전기저항식 변형률 게이지를 이용한 콘크리트의 열팽창계수 측정법)

  • Nam, Jeong-Hee;An, Deok-Soon;Kim, Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.25-32
    • /
    • 2013
  • PURPOSES : The purpose of this study is to provide the method of how to measure the coefficient of thermal expansion of concrete using temperature compensation principle of electrical resistance strain gauge. METHODS : The gauge factor compensation method and thermal output(temperature-induced apparent strain) correction method of self-temperature compensation gauge were investigated. From the literature review, coefficient of thermal expansion measurement method based on the thermal output differential comparison between reference material(invar) and unknown material(concrete) was suggested. RESULTS : Thermal output is caused by two reasons; first the electrical resistivity of the grid conductor is changed by temperature variation and the second contribution is due to the differential thermal expansion between gauge and the test material. Invar was selected as a reference material and it's coefficient of thermal expansion was measured as $2.12{\times}10^{-6}m/m/^{\circ}C$. by KS M ISO 11359-2. The reliability of the suggested measurement method was evaluated by the thermal output measurement of invar and mild steel. Finally coefficient of thermal expansion of concrete material for pavement was successfully measured as $15.45{\times}10^{-6}m/m/^{\circ}C$. CONCLUSIONS : The coefficient of thermal expansion measurement method using thermal output differential between invar and unknown concrete material was evaluated by theoretical and experimental aspects. Based on the test results, the proposed method is considered to be reasonable to apply for coefficient of thermal expansion measurement.

Prediction of fracture in Hub-hole Expansion Process Using Ductile fracture Criteria (연성파괴기준을 이용한 허브홀 확장과정에서의 파단 예측)

  • Ko, Y. K.;Lee, J. S.;Huh, H.;Kim, H. K.;Park, S. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.601-606
    • /
    • 2005
  • A hole expansion process is an important process in producing a hub-hole in a wheel disc of a vehicle. In this process, the main parameter is the formability of a material that is expressed as the hole expansion ratio. In the process, a crack is occurred in the upper edge of a hole as the hole is expanded. Since prediction of the forming limit by hole expansion experiment needs tremendous time and effort, an appropriate fracture criterion has to be developed for finite element analysis to define forming limit of the material. In this paper, the hole expansion process of a hub-hole is studied by finite element analysis with ABAQUS/standard considering several ductile fracture criteria. The fracture mode and hole expansion ratio are compared with respect to the various fracture criteria. These criteria do not predict its fracture mode or hole expansion ratio adequately and show deviation from experimental results of hole expansion. A modified ductile fracture criterion is newly proposed to consider the deformation characteristics of a material accurately in a hole expansion process. A fracture propagation analysis at the hub-hole edge is also performed for high accuracy of prediction using the new fracture criterion proposed.

Propriety Examination of Expansion Joint Spacing of Airport Concrete Pavement by Weather and Material Characteristics (기상과 재료 특성에 의한 공항 콘크리트 포장 팽창줄눈 간격의 적정성 검토)

  • Park, Hae Won;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.65-73
    • /
    • 2018
  • PURPOSES : In this study, the propriety of expansion joint spacing of airport concrete pavement was examined by using weather and material characteristics. METHODS : A finite element model for simulating airport concrete pavement was developed and blowup occurrence due to temperature increase was analyzed. The critical temperature causing the expansion of concrete slab and blow up at the expansion joint was calculated according to the initial vertical displacement at the joint. The amount of expansion that can occur in the concrete slab for 20 years of design life was calculated by summing the expansion and contraction by temperature, alkali-silica reaction, and drying shrinkage. The effective expansion of pavement section between adjacent expansion joints was calculated by subtracting the effective width of expansion joint from the summation of the expansion of the pavement section. The temperature change causing the effective expansion of pavement section was also calculated. The effective expansion equivalent temperature change was compared to the critical temperature, which causes the blowup, according to expansion joint spacing to verify the propriety of expansion joint applied to the airport concrete pavement. RESULTS : When an initial vertical displacement of the expansion joint was 3mm or less, the blowup never occurred for 300m of joint spacing which is used in Korean airports currently. But, there was a risk of blow-up when an initial vertical displacement of the expansion joint was 5mm or more due to the weather or material characteristics. CONCLUSIONS : It was confirmed that the intial vertical displacement at the expansion joint could be managed below 3mm from the previous research results. Accordingly it was concluded that the 300m of current expansion joint spacing of Korean airports could be used without blowup by controling the alkali-silica reaction below its allowable limit.

Influences of Process Conditions on the Surface Expansion and Contact Pressure in Backward Can Extrusion of Al Alloys (알루미늄 합금을 이용한 후방압출에 의한 캔 성형시 성형 조건이 표면확장과 접촉 압력에 미치는 영향)

  • Min, K.H.;Seo, J.M.;Koo, H.S.;Vishara, R.J.;Tak, S.H.;Lee, I.C.;Hwang, B.B.
    • Transactions of Materials Processing
    • /
    • v.16 no.7
    • /
    • pp.521-529
    • /
    • 2007
  • This paper is concerned with the analysis on the surface expansion of AA 2024 and AA 1100 aluminum alloys in backward extrusion process. Due to heavy surface expansion appeared usually in the backward can extrusion process, the tribological conditions along the interface between the material and the punch land are very severe. In the present study, the surface expansion is analyzed especially under various process conditions. The main goal of this study is to investigate the influence of degree of reduction in height, geometries of punch nose, friction and hardening characteristics of different aluminum alloys on the material flow and thus on the surface expansion on the working material. Two different materials are selected for investigation as model materials and they are AA 2024 and AA 1100 aluminum alloys. The geometrical parameters employed in analysis include punch corner radius and punch nose angle. The geometry of punch follows basically the recommendation of ICFG and some variations of punch geometry are adopted to obtain quantitative information on the effect of geometrical parameters on material flow. Extensive simulation has been conducted by applying the rigid-plastic finite element method to the backward can extrusion process under different geometrical, material, and interface conditions. The simulation results are summarized in terms of surface expansion at different reduction in height, deformation patterns including pressure distributions along the interface between workpiece and punch, comparison of surface expansion between two model materials, geometrical and interfacial parametric effects on surface expansion, and load-stroke relationships.

Material Flow and Surface Expansion in Radial-Backward Extrusion (레이디얼 압출과 연계된 후방압출의 소재유동과 표면확장)

  • 고병두;최호준;장동환;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.251-258
    • /
    • 2003
  • The paper deals with an analysis of an extrusion process with a divided material flow in a combined radial - backward extrusion. The paper discusses the influences of tool geometry such as punch nose angle, relative gap height, die comer radius on material flow and surface expansion into can and flange region. To analyze the process, numerical simulations by the FEM and experiment, an Al alloy as a model material have been performed. Based on the results, the influence of design parameters on the distribution of divided material flow and surface expansion are obtained.

Evaluation on Behavior Characteristics of a Pocketable Expansion Material for Ground Cavity Based on Wheel Tracking Test Results (휠트래킹 시험을 통한 포켓형 지반공동 긴급복구 팽창재료의 거동특성 평가)

  • Park, Jeong-Jun;Kim, Ju-Ho;Kim, Ki-Sung;Kim, Dongwook;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.75-83
    • /
    • 2018
  • This paper described a results of dynamic stability by using wheel tracking test and unconfined compression test, in order to evaluate behavior characteristics on the developed pocketable expansion material for emergency restoration of ground cavity. The wheel tracking test result showed that the settlement increment ratio of the recovered ground by the expansion material was decreased compared to the sandy ground in high load condition. That is, it was confirmed that the expansion material was able to restrain the settlement due to the material stiffness, and the same results were obtained for the dynamic stability evaluation results. From the results of unconfined compression test, the pocketable expansion material was found to be able to fully support load on the restored cavity.

Effect of Heat-treatment in Low Thermal Expansion Coefficient Fe-Ni-Co alloy for Core Material of Increased Capacity Transmission Line (증용량 송전선 강심용 저열팽창 Fe-Ni-Co 합금에 있어서 용체화처리 영향)

  • 김봉서;유경재;김병걸;이희웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.950-952
    • /
    • 2000
  • Considering the effective distribution coefficient of Ni in Fe-Ni-Co invar alloy containing a little amount of carbon, we investigated on the thermal expansion coefficient(${\alpha}$). Fe-Ni-Co invar alloy had a large thermal expansion coefficient in as-casted compared with solution treated. The thermal expansion coefficient of Fe-Ni-Co alloy increased with the carbon content in both state of as-casted and solution treated. The effective distribution coefficient(Ke$\^$Ni/) of Ni was smaller than unity in alloy of not containing carbon, but is way larger than unity in alloy of containing carbon. It was considered that the homogeneity of Ni in primary austenite affected thermal expansion coefficient.

  • PDF

Prediction of fracture in hub-hole expansion process using new ductile fracture criterion (새로운 연성파괴기준을 이용한 허브홀 확장과정에서의 파단 예측)

  • Ko Y. K.;Lee J. S.;Kim H. K.;Park S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.163-166
    • /
    • 2005
  • A hole expansion process is an important process in producing a hub-hole in a wheel disc of a vehicle. In this process, the main parameter is the formability of a material that is expressed as the hole expansion ratio. The hub-hole expansion process is different from conventional forming processes or hole flanging processes from the view-point of its deformation mode and forming of a thick plate. In the process, a crack is occurred in the upper edge of a hole as the hole is expanded. Since prediction of the forming limit by hole expansion experiment needs tremendous time and effort, an appropriate fracture criterion has to be developed fur finite element analysis to define forming limit of the material. In this paper, the hole expansion process of a hub-hole is studied by finite element analysis with ABAQUS/standard considering several ductile fracture criteria. The fracture mode and hole expansion ratio is compared with respect to the various fracture criteria. These criteria do not predict its fracture mode or hole expansion ratio adequately and show deviation from experimental results of hole expansion. A modified ductile fracture criterion is newly proposed to consider the deformation characteristics of a material accurately in a hole expansion process. A fracture propagation analysis at the hub-hole edge is also performed for high accuracy of prediction using the new fracture criterion proposed.

  • PDF

The Decision on the Thermal Expansion Coefficient of the Glass Infiltrated in All Ceramic Crown (전부도재관 제작용 침투유리의 열팽창계수의 결정)

  • 김병수;이득용;김학관;장주웅
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.93-97
    • /
    • 2003
  • Using alumina-glass infiltrated material which has been in the spotlight of biomaterials including dental material, appropriate composition of glass infiltrated material mainly depends on the thermal expansion coefficient. To obtain proper compositional glass of suitable thermal expansion coefficient effiiently. a Taguchi analysis was conducted. The influence of alkali oxide and alkali earths oxide, which affect mostly the thermal expansion coefficient of glass infiltrated material, was infiltrated material, the effect having influenced on the thermal expansion coefficient of glass was presented in this order (Na$_2$O≫K$_2$O ≫MgO≒CaO). The effect of Na$_2$O was about eight times as great as the effects of MgO, CaO and $K_2$O was about four times. Among the interaction affects of each variables the interaction affects of $K_2$O-CaO showed most significantly and thermal expansion property of specified composition was predicted by calculating contribution rate on each level of variables and interaction affects.