• 제목/요약/키워드: Expansion cooling

검색결과 299건 처리시간 0.031초

Thermal Properties of Graphene

  • Yoon, Du-Hee;Lee, Jae-Ung;Son, Young-Woo;Cheong, Hyeon-Sik
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.14-14
    • /
    • 2011
  • Graphene is known to possess excellent thermal properties, including high thermal conductivity, that make it a prime candidate material for heat management in ultra large scale integrated circuits. For device applications, the key parameters are the thermal expansion coefficient and the thermal conductivity. There has been no reliable experimental determination on the thermal expansion coefficient of graphene whereas the estimates of the thermal conductivity vary widely. In this work, we estimate the thermal expansion coefficient of graphene on silicon dioxide by measuring the temperature dependence of the Raman spectrum. The shift of the Raman peaks due to heating or cooling results from both the intrinsic temperature dependence of the Raman spectrum of graphene and the strain on the graphene film due to the thermal expansion mismatch with silicon dioxide. By carefully comparing the experimental data against theoretical calculations, it is possible to determine the thermal expansion coefficient. The thermal conductivity is measured by estimating the thermal profile of a graphene film suspended over a circular hole of the substrate.

  • PDF

암모니아-물 흡수식 열교환 사이클의 운전 특성 (Operating Characteristics of Ammonia-Water Absorber Heat Exchange Cycle)

  • 강인석;김남진;김종보
    • 에너지공학
    • /
    • 제10권4호
    • /
    • pp.357-362
    • /
    • 2001
  • 충진농도, 냉매 팽창밸브 개도, 그리고 약용액의 유량 변화에 따른 벤치타입 암모니아-물 흡수식 열교환 사이클에 대한 실험을 수행한 결과 시스템의 충진농도가 증가할수록 냉방능력이 증가하였으며, 최적의 충진농도가 존재함을 알았다. 그리고 냉매 팽창 밸브의 개도는 응축기 출구의 직접적인 영향을 주고 있으며 최적의 과냉도가 0~4$^{\circ}C$임을 알았다. 또한 약용액의 유량이 증가시킬수록 증발압력과 강용액의 농도가 즐어들었으며, 냉방능력과 COP가 최대가 되는 최적의 약용액 유량이 존재하였다.

  • PDF

Effect of Grain Size on the Thermomechanical Properties of $Al_2 TiO_5$ Ceramics

  • Kim, Ik-Jin;Kweon, Oh-Seong;Ko, Young-Shin;Constatin Zografou
    • The Korean Journal of Ceramics
    • /
    • 제2권4호
    • /
    • pp.246-250
    • /
    • 1996
  • The thermomechanical properties of materials from the system Al2O3-SiO2-TiO2(Tialite-Mullite) were investigated by correlating the thermal expansion anisotroypy, flexural strength and Young's modulus with grain size and atructural microcracking during cooling. Microcracking temperatures were determined by measuring the hysteresis of the thermal expansion anisotropy with dilatometry. Single phase Aluminium Titanate is a low strength material, while composites with more than 10 vol% mullite as second phase enhance the Young's modulus, thermal expansion coefficient and room temperature strength.

  • PDF

3 밸브형 맥동관 냉동기의 작동 해석 (Analysis of the Operation of a 3 Valve-type Pulse Tube Refrigerator)

  • 송영식;조경철;정평석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.335-340
    • /
    • 2000
  • A 3 valve-type pulse tube refrigerator optains its cooling effect from pressure drop by releasing the part of the charged gas through hot end nozzle. The objective of this study is to analyze the performance and to find an optimal expansion pressure of the 3 valve-type pulse tube refrigerator. It is assumed that gas lumps are not mixed and periodically repeat the adiabatic compression and expansion processes. And the nodal model is applied for the analysis of the regenerator. As the result of analysis, the optimum pressure at the end of expansion process was about 80-90% of the maximum pressure.

  • PDF

Thermal Strain Measurement of Austin Stainless Steel (SS304) during a Heating-cooling Process

  • Ha, Ngoc San;Le, Vinh Tung;Goo, Nam Seo;Kim, Jae Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.206-214
    • /
    • 2017
  • In this study, measurement of thermophysical properties of materials at high temperatures was performed. This experiment employed a heater device to heat the material to a high temperature. The images of the specimen surface due to thermal load at various temperatures were recorded using charge-coupled device (CCD) cameras. Afterwards, the full-field thermal deformation of the specimen was determined using the digital image correlation (DIC) method. The capability and accuracy of the proposed technique are verified by two experiments: (1) thermal deformation and strain measurement of a stainless steel specimen that was heated to $590^{\circ}C$ and (2) thermal expansion and thermal contraction measurements of specimen in the process of heating and cooling. This research focused on two goals: first, obtaining the temperature dependence of the coefficient of thermal expansion, which can be used as data input for finite element simulation; and second, investigating the capability of the DIC method in measuring full-field thermal deformation and strain. The results of the measured coefficient of thermal expansion were close to the values available in the handbook. The measurement results were in good agreement with finite element method simulation results. The results reveal that DIC is an effective and accurate technique for measuring full-field high-temperature thermal strain in engineering fields such as aerospace engineering.

삽입 가스의 부피 팽창을 이용한 탄소나노튜브 진동기 (Carbon Nanotube Oscillator Operated by Thermal Expansion of Encapsulated Gases)

  • 권오근
    • 한국전기전자재료학회논문지
    • /
    • 제18권12호
    • /
    • pp.1092-1100
    • /
    • 2005
  • We investigated a carbon nanotube (CNT) oscillator controlled by the thermal gas expansion using classical molecular dynamics simulations. When the temperature rapidly increased, the force on the CNT oscillator induced by the thermal gas expansion rapidly increased and pushed out the CNT oscillator. As the CNT oscillator extruded from the outer nanotube, the suction force on the CNT oscillator increased by the excess van der Waals(vdW) energy. When the CNT oscillator reached at the maximum extrusion point, the CNT oscillator was encapsulated into the outer nanotube by the suction force. Therefore, the CNT oscillator could be oscillated by both the gas expansion and the excess vdW interaction. As the temperature increased, the amplitude of the CNT oscillator increased. At the high temperatures, the CNT oscillator escaped from the outer nanotube, because the force on the CNT oscillator due to the thermal gas expansion was higher than the suction force due to the excess vdW energy. By the appropriate temperature controls, such as the maximum temperature, the heating rate, and the cooling rate, the CNT oscillator could be operated.

액체로켓엔진 노즐확장부 소재기술 동향 (Material Trends of Nozzle Extension for Liquid Rocket Engine)

  • 이금오;유철성;최환석
    • 항공우주산업기술동향
    • /
    • 제9권1호
    • /
    • pp.139-149
    • /
    • 2011
  • 액체 로켓 엔진의 연소기는 높은 온도의 연소가스를 발생시키므로 연소실과 노즐은 열적으로 보호되어야 한다. 고공 엔진의 노즐확장부도 고열에 견딜 수 있게 설계되어야 하며, 이를 위하여 가스냉각, 삭마냉각, 복사냉각등 다양한 방법의 냉각이 적용되고 있다. 특히 큰 노즐 팽창비를 갖는 상단엔진의 경우 무게가 발사체 성능에 미치는 영향이 크므로 경량 내열 소재가 개발되어 사용되어 왔다. 미국과 러시아, 유럽에서 사용되어 온 노즐확장부 재료를 조사한 결과 스테인리스강과 티타늄합금과 같은 무거운 금속 재료에서 경량의 탄소섬유 강화 복합재 또는 세라믹 복합재로 바뀌어 가는 경향이 파악되었다.

  • PDF

터빈 블레이드 냉각시스템에 관한 수치해석적 연구 (NUMERICAL STUDY OF TURBINE BLADE COOLING TECHNIQUES)

  • 김광용;이기돈;문미애;허만웅;김현민;김진혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.530-533
    • /
    • 2010
  • This paper presents numerical analysis and design optimization of various turbine blade cooling techniques with three-dimensional Reynolds-averaged Navier-Stokes(RANS) analysis. The fluid flow and heat transfer have been performed using ANSYS-CFX 11.0. A fan-shaped hole for film-cooling has been carried out to improve film-cooling effectiveness with the radial basis neural network method. The injection angle of hole, lateral expansion angle of hole and ratio of length-to-diameter of the hole are chosen as design variables and spatially averaged film-cooling effectiveness is considered as an objective function which is to be maximized. The impingement jet cooling has been performed to investigate heat transfer characteristic with geometry variables. Distance between jet nozzle exit and impingement plate, inclination of nozzle and aspect ratio of nozzle hole are considered as geometry variables. The area averaged Nusselt number is evaluated each geometry variables. A rotating rectangular channel with staggered array pin-fins has been investigated to increase heat transfer performance ad to decrease friction loss using KRG modeling. Two non-dimensional variables, the ratio of the eight diameter of the pin-fins and ratio of the spacing between the pin-fins to diameter of the pin-fins selected as design variables. A rotating rectangular channel with staggered dimples on opposite walls are formulated numerically to enhance heat transfer performance. The ratio of the dimple depth and dimple diameter are selected as geometry variables.

  • PDF

3실형 인버터 열펌프 시스템의 냉방성능 측정 (Cooling Performance Measurement of a 3 Room Type Inverter Heat Pump System)

  • 정광진;최영돈;장효환;송재복;박윤철
    • 설비공학논문집
    • /
    • 제13권6호
    • /
    • pp.431-439
    • /
    • 2001
  • Recently, multi-room type heat pump system has aroused much attention, because it can achieve much reduction of installation cost and space as well as energy saving in companion with the single room type heat pump system. In the present study, performance characteristics of a 3 room type inverter driven heat pump system, which is widely spread in Japanese market, are measured.. In the single room operation, performances of a heat pump system such s the difference of compressor outlet and inlet pressures and the mass flowrate may increase with the increase of cooling capacity so that COP of the system decrease with the increase of cooling capacity. However, in the 2 room operation, mass flowrate and COP of the total system increase markedly as compared with the single room operation.

  • PDF

재생냉각 유로 내의 유동에 관한 수치해석 (Numerical Analysis of Fluid Flow in a Regenerative Cooling Passage)

  • 조원국
    • 한국추진공학회지
    • /
    • 제4권1호
    • /
    • pp.46-52
    • /
    • 2000
  • 축소형 액체로켓 엔진에 적용될 재생냉각유로에 대한 전산유동해석을 수행하고 결과로서 유로 내의 압력손실과 열전달률을 예측하였다. 유로의 단면적 축소/확대가 압력손실을 증가시키지만 이차유동을 유발하고 난류화를 촉진시켜 열전달률을 상승시키는 효과가 있는 것으로 밝혀졌다. 단면적 변화는 노즐목 부근에서 일어나는데 이는 열부하가 큰 노즐목을 보호하는데 효과적이다. 또한 유량 변화로 인한 재생냉각 장치의 정량적인 성능변화를 관찰하였다.

  • PDF