• Title/Summary/Keyword: Expansion Method

Search Result 3,557, Processing Time 0.033 seconds

Change of Porosity and Water Vapour Transport Properties of Wool Fabrics by the Change of Moisture Regain and Fabric Structure (모직물의 수분율 변화와 구조에 따른 기공도 및 수분전달 특성변화)

  • 김동옥;나미희;김은애
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.6
    • /
    • pp.820-828
    • /
    • 1999
  • The purpose of this study was to investigate the changes of pore area and water vapour transport by the changes of moisture regain and fabric structure of wool fabrics, As specimens 4 worsted wool fabrics were used. The pore area were measured by image analysis method and dinamic vapour transport and water reisitance was determined by clothing-environment-body modelling system. The pore area was changed by the moisture regain of wool fabrics. The change of pore area was influenced by the yarn twist thread count and cover factor and the weave type. The water vapour transport was changed by the moisture regain. The change of water vapour transport was influenced by the change of pore aree which was determined by image analysis.

  • PDF

Calculation of the Molecular Quadrupole Moments (I). Calculation for the Quadrupole Moment Matrix Elements by Operator Technique (분자의 사중극자모멘트의 계산 (제1보). 연산자법에 의한 사중극자모멘트행렬요소의 계산)

  • Sangwoon Ahn;Jeong Soo Ko
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.296-306
    • /
    • 1979
  • Operator technique has been applied for calculation of the quadrupole moment matrix-elements. Master formulas for the quadrupole moment matrix elements for pairs of Slater type, orbitals are derived, one using the expansion method for spherical harmonics and the other the transformed of the quadrupole moment matrix elements into overlap integrals for Mulliken. The numerical values of the quadrupole moment matrix elements evaluated by two methods are in agreement with each other and the calculated quadrupole moment for the ground state of HCl molecule is also in agreement with that of Nesbet.

  • PDF

AHP-Based Evaluation Model for Optimal Selection Process of Patching Materials for Concrete Repair: Focused on Quantitative Requirements

  • Do, Jeong-Yun;Kim, Doo-Kie
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.87-100
    • /
    • 2012
  • The process of selecting a repair material is a typical one of multi-criteria decision-making (MCDM) problems. In this study Analytical Hierarch Process was applied to solve this MCDM problem. Many factors affecting a process to select an optimal repair material can be classified into quantitative and qualitative requirements and this study handled only quantitative items. Quantitative requirements in the optimal selection model for repair material were divided into two parts, namely, the required chemical performance and the required physical performance. The former is composed of alkali-resistance, chloride permeability and electrical resistivity. The latter is composed of compressive strength, tensile strength, adhesive strength, drying shrinkage, elasticity and thermal expansion. The result of the study shows that this method is the useful and rational engineering approach in the problem concerning the selection of one out of many candidate repair materials even if this study was limited to repair material only for chloride-deteriorated concrete.

Reduction of train-induced vibrations on adjacent buildings

  • Hung, Hsiao-Hui;Kuo, Jenny;Yang, Yeong-Bin
    • Structural Engineering and Mechanics
    • /
    • v.11 no.5
    • /
    • pp.503-518
    • /
    • 2001
  • In this paper, the procedure for deriving an infinite element that is compatible with the quadrilateral Q8 element is first summarized. Enhanced by a self mesh-expansion procedure for generating the impedance matrices of different frequencies for the region extending to infinity, the infinite element is used to simulate the far field of the soil-structure system. The structure considered here is of the box type and the soils are either homogeneous or resting on a bedrock. Using the finite/infinite element approach, a parametric study is conducted to investigate the effect of open and in-filled trenches in reducing the structural vibration caused by a train passing nearby, which is simulated as a harmonic line load. The key parameters that dominate the performance of wave barriers in reducing the structural vibrations are identified. The results presented herein serve as a useful guideline for the design of open and in-filled trenches concerning wave reduction.

Mission Analysis and Planning System for Korea Multipurpose Satellite-I

  • Won, Chang-Hee;Lee, Jeong-Sook;Lee, Byoung-Sun;Eun, Jong-Won
    • ETRI Journal
    • /
    • v.21 no.3
    • /
    • pp.29-40
    • /
    • 1999
  • The Mission Analysis and Planning System (MAPS) has been developed for a low earth orbiting remote sensing satellite, Korea Multipurpose Satellite-I (KOMPSAT-I), to monitor and control the orbit and the attitude as well as to generate mission timelines and command plans. The MAPS has been designed using a top-down approach and modular programming method to ensure flexibility in modification and expansion of the system. Furthermore, a graphical user interface has been adopted to ensure friendliness. Design, Implementation, and testing of the KOMPSAT is discussed in this paper.

  • PDF

Fluorescence Spectroscopic and Time-Dependent Density-Functional Theory Studies of Diphenylsilane

  • Boo, Bong-Hyun;Lee, Jae-Kwang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.993-996
    • /
    • 2012
  • We investigated fluorescence and fluorescence excitation of diphenylsilane (DPS) in a solution and molecular beams in combination with the aid of the DFT method. When the molecule was photoexcited at 250 nm in a cyclohexane solution, normal and excimer fluorescences were observed in the ranges of 260-320 and 330-450 nm, respectively. The fluorescence excitation spectrum indicates that the channel leading to the intramolecular excimer formation is not efficient in comparison with the normal fluorescence. Vibrationally resolved fluorescence excitation spectra were measured for the DPS molecules cooled in pulsed supersonic expansion of He in the range 262.2-271.7 nm, in which we can see several electronic excitation spectra exhibiting the electronic band origins. We found that the simulated absorption spectrum based on the time-dependent densityfunctional theory calculations accords well with the absorption spectrum.

Multiple Description Coding using Unequal MDSQ in Wavelet Domain

  • Yoon, Eung-Sik;Park, Kwang-Pyo;Lee, Keun-Young
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.281-284
    • /
    • 2002
  • Error resilience for image coding is an important component of multimedia communication system. Error resilience schemes address loss recovery from the compression perspective. Multiple description coding (MDC) is one of the error resilience techniques promising for robust video transmission. It is the way to achieve tradeoff description such as scalar quantization, correlating transform and the quantized frame expansion. In this paper, we consider Multiple Description Scalar Quantization (MDSQ) to wavelet domain. Conventional MDSQ schemes considered description with equal weights in each sub-bands. But, we can see that the each sub-bands is unequal contribution to whole image quality. Therefore, we experiment the multiple design MDSQ table to make probability of zero index high, which gives high efficiency in arithmetic symbol coder. We also compare our proposed method with the conventional methods and show improved performance in terms of redundancy-rate-distortion.

  • PDF

Sloshing Analysis in Rectangular Tank with Porous Baffle (투과성 내부재가 설치된 사각형 탱크내의 슬로싱 해석)

  • Cho, IL-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • An analytical model of liquid sloshing is developed to consider the energy-loss effect through a partially submerged porous baffle in a horizontally oscillating rectangular tank. The nonlinear boundary condition at the porous baffle is derived to accurately capture both the added inertia effects and the energy-loss effects from an equivalent non-linear drag law. Using the eigenfunction expansion method, the horizontal hydrodynamic force (added mass, damping coefficient) on both the wall and baffle induced by the fluid motion is assessed for various combinations of porosity, submergence depth, and the tank's motion amplitude. It is found that a negative value for the added mass and a sharp peak in the damping curve occur near the resonant frequencies. In particular, the hydrodynamic force and free surface amplitude can be largely reduced by installing the proper porous baffle in a tank. The optimal porosity of a porous baffle is near P=0.1.

Application of graded harmonic FE in the analysis of 2D-FGM axisymmetric structures

  • Karakas, Ali I.;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.473-494
    • /
    • 2015
  • A graded harmonic finite element formulation based on three-dimensional elasticity theory is developed for the structural analysis of 2D functionally graded axisymmetric structures. The mechanical properties of the axisymmetric solid structures composed of two different metals and ceramics are assumed to vary in radial and axial directions according to power law variations as a function of the volume fractions of the constituents. The material properties of the graded element are calculated at the integration points. Effects of material distribution profile on the static deformation, natural frequency and dynamic response analyses of particular axisymmetric solid structures are investigated by changing the power law exponents. It is observed that the displacements, stresses and natural frequencies are severely affected by the variation of axial and radial power law exponents. Good accuracy is obtained with fewer elements in the present study since Fourier series expansion eliminates the need of finite element mesh in circumferential direction and continuous material property distribution within the elements improves accuracy without refining the mesh size in axial and radial directions.

Semi-analytical solution of horizontally composite curved I-beam with partial slip

  • Qin, Xu-xi;Liu, Han-bing;Wu, Chun-li;Gu, Zheng-wei
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • This paper presents a semi-analytical solution of simply supported horizontally composite curved I-beam by trigonometric series. The flexibility of the interlayer connectors between layers both in the tangential direction and in the radial direction is taken into account in the proposed formulation. The governing differential equations and the boundary conditions are established by applying the variational approach, which are solved by applying the Fourier series expansion method. The accuracy and efficiency of the proposed formulation are validated by comparing its results with both experimental results reported in the literature and FEM results.