• Title/Summary/Keyword: Expansion Efficiency

Search Result 858, Processing Time 0.025 seconds

A Chancteristic of Thermal Efficiency in Order to High Expansion Realization with a Retard of Intake Valve Closing Time in the Low Speed Diesel Engine (저속 디젤기관에서 흡기밸브 닫힘시기 지연시 고팽창 실현을 위한 열효율 특성)

  • Jang Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.42-49
    • /
    • 2006
  • In this research. the diesel cycle was thermodynamically interpreted to evaluate the possibility of high efficiency by converting diesel engines to the high expansion diesel cycle, and general cycle features were analyzed after comparing these two cycles. Based on these analyses. an experimental single cylinder a long stroke with high expansion-diesel engine. of which S/B ratio was more than 3, was manufactured. After evaluating the base engine through basic experiments, a diesel engine was converted into the high expansion diesel engine by establish VCR device and VVT system Accordingly, the high expansion diesel cycle can be implemented when the quantity of intake air is compensated by supercharge and the effective compression ratio is maintained at its initial level through the reduction of the clearance volume. In this case, heat efficiency increased by $5.0\%$ at the same expansion-compression ratio when the apparent compression ratio was 20 and the fuel cut off ratio was 2. As explained above, when the atkinson cycle was used for diesel cycle, heat efficiency was improved. In order to realize high expansion through retarding the intake value closing time, the engine needs to be equipped with variable valve timing equipment, variable compression ratio equipment and supercharged pressure equipment. Then a high expansion diesel cycle engine is realized.

EFFECT OF OVER-EXPANSION CYCLE IN A SPARK-IGNITION ENGINE USING LATE-CLOSING OF INTAKE VALVE AND ITS THERMODYNAMIC CONSIDERATION OF THE MECHANISM

  • Shiga, S.;Hirooka, Y.;Miyashita, Y.;Yagi, S.;Machacon, H.T.C.;Karasawa, T.;Nakamura, H.
    • International Journal of Automotive Technology
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • This paper presents further investigation into the effect of over-expansion cycle in a spark-ignition engine. On the basis of the results obtained in previous studies, several combinations of late-closing (LC) of intake valve and expansion ratio were tested using a single-cylinder production engine. A large volume of intake capacity was inserted into the intake manifold to simulate multi-cylinder engines. With the large capacity volume, LC can decrease the pumping loss and then increase the mechanical efficiency. Increasing the expansion ratio from 11 to 23.9 with LC application can produce about 13% improvement of thermal efficiency which was suggested to be caused by the increased cycle efficiency. The decrease of compression ratio from 11 to 5.5 gives little effect on the thermal efficiency if the expansion ratio could be kept constant. Thus, the expansion ratio is revealed to be a determining factor for cycle efficiency, while compression ratio is no more important, which suggests the usefulness of controlling the intake charge with intake valve closure timing. These were successfully explained by simple thermodynamic calculation and thus the mechanism could be verified by the estimation.

  • PDF

A Study on the Characteristics of the Treatment with Bed Expansion and the Biomass Attachment in the Start-up of the AFBR (혐기성 유동층 반응기에서 층팽창에 따른 처리특성 및 미생물 부착특성)

  • 안재동;정종식;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.2
    • /
    • pp.20-26
    • /
    • 1995
  • The objective of this study is to estimate the effect of the bed expansion and the characteristics of attached biomass in the start-up in the anaerobic fluidized bed reactor(AFBR). The fluidized bed reactor was operated with bacteria supported on the bed of granular activated carbon(GAC). The reactor was operated at 35$\circ$C, 5 kg $COD/m^3\cdot day$ at bed expansion varying from 0 to 100% with soluble glucose wastewater(5,000 mg/l). When the effluent reached a steady state at 100% of bed expansion, maximum COD removal efficiency of 87.3% and 0.031 $m^3CH_4/kg COD_{removed}$ were obtained. At higher bed expansion, COD removal efficiency, methane production rate and biogas production rate increased. Especially, at 50% of bed expansion, the efficiency of the treatment increasedg rapidly in the AFBR. The biomass colonized in the pits and crevices of the GAC particle and no complete biofilm was established in the bioreactor during the experiment.

  • PDF

A Study on the Composition of Atkinson Cycle and Thermodynamically Analysis for a Diesel Engine (디젤기관에 대한 앳킨슨사이클 구성과 사이클의 열역학적 해석에 관한 연구)

  • Kim Chul Soo;Jung Young Guan;Jang Tae lk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.185-193
    • /
    • 2005
  • The present study composed a diesel-atkinson cycle of high expansion as a method of achieving high efficiency in diesel cycle engines. It also interpreted the cycle engine thermodynamically analysis to determine the possibility of the improvement of thermal efficiency and clarified the characteristics of several factors . According to the result of theoretical analysis, heat efficiency was highest when expansion-compression ratio Reど:1. In addition. diesel engines with high apparent compression ratio had higher expansion-compression ratio than otto engines and consequently their effect of high expansion was high. which in turn enhanced thermal efficiency. When the atkinson cycle was implemented in a real diesel engine by applying the miller cycle through the variation of the closing time of the intake valve, the effective compression ratio and the quantify of intake air decreased and as a result, the effect of high expansion was not observed. Accordingly. the atkinson cycle can be implemented when the quantity of intake air is compensated by supercharge and the effective compression ratio is maintained at its initial level through the reduction of the clearance volume. In this case. heat efficiency increased by $4.1\%$ at the same expansion-compression ratio when the apparent compression ratio was 20 and the fuel cut off ratio was 2. As explained above, when the atkinson cycle was used for diesel cycle. heat efficiency was improved. In order to realize high expansion through retarding the intake value closing time, the engine needs to be equipped with variable valve timing equipment, variable compression ratio equipment and supercharged Pressure equipment. Then a diesel-atkinson cycle engine is realized.

Expansion of Dusty H II Regions and Its Impact on Disruption of Molecular Clouds

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Ostriker, Eve
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.58.3-59
    • /
    • 2015
  • Dynamical expansion of H II regions plays a key role in dispersing surrounding gas and therefore in limiting the efficiency of star formation in molecular clouds. We use analytic methods and numerical simulations to explore expansions of spherical dusty H II regions, taking into account the effects of direct radiation pressure, gas pressure, and total gravity of the gas and stars. Simulations show that the structure of the ionized zone closely follows Draine (2011)'s static equilibrium model in which radiation pressure acting on gas and dust grains balances the gas pressure gradient. Strong radiation pressure creates a central cavity and a compressed shell at the ionized boundary. We analytically solve for the temporal evolution of a thin shell, finding a good agreement with the numerical experiments. We estimate the minimum star formation efficiency required for a cloud of given mass and size to be destroyed by an HII region expansion. We find that typical giant molecular clouds in the Milky Way can be destroyed by the gas-pressure driven expansion of an H II region, requiring an efficiency of less than a few percent. On the other hand, more dense cluster-forming clouds in starburst environments can be destroyed by the radiation pressure driven expansion, with an efficiency of more than ~30 percent that increases with the mean surface density, independent of the total (gas+stars) mass. The time scale of the expansion is always smaller than the dynamical time scale of the cloud, suggesting that H II regions are likely to be a dominant feedback process in protoclusters before supernova explosions occurs.

  • PDF

Advanced Dual Refrigerant Expansion Cycle for LNG Liquefaction (천연가스 액화용 이중 냉매 팽창 사이클)

  • Kim, Minki;Kim, Mungyu;Lee, Kihwan;Kim, Hyobin;Lee, Donghun;Min, Joonho;Kim, Jinmo
    • Plant Journal
    • /
    • v.15 no.2
    • /
    • pp.46-55
    • /
    • 2019
  • This paper presents a LNG Liquefaction cycle configuration using two stages of methane expansion (i.e. spliting into two stages as warm & cold to generate an additional inflection point within a cold composite curve) and a single stage of nitrogen expansion to improve the efficiency of the conventional Methane & Nitrogen Expansion Cycle. In comparison with Double Nitrogen Expansion Cycel and Methane & Nitrogen Expansion Cycle, the cycle efficiency has increased approximately from 13.92 and 13.13 to 12.08 kW/ton/day (8~15% efficiency increase). A Life Cycle Cost (LCC) analysis based on Net Present Value (NPV) also show an improvement in therms of project NPV, against a minor increment of a CAPEX.

A Study on the Theory Analysis and Engine Test Performance by a High Expansion Diesel Engine into Intake-Exhaust Consideration (흡.배기를 고려한 고팽창 저속 디젤 기관의 이론 해석과 기관 성능에 대한 연구)

  • Jang, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1141-1148
    • /
    • 2008
  • One of the methods to increase the efficiency of an engine is to expand pressures obtained from combustions equal to the pressure of atmosphere as much as possible and then convert thermal energy into mechanical energy also as much as possible. In this research, the Diesel cycle was thermodynamically interpreted to evaluate the possibility of high efficiency by converting Diesel engines to the Atkinson cycle, and general cycle features were analyzed after comparing these two cycles. In the case of fuel air the Diesel-Atkinson cycle considering intake and exhaust similar to real cycles, the value of thermal efficiency and average effective pressure increased, though their values were smaller than those of standard air amount cycle, when expansion compression ratio increased. When normal Diesel engines of which compression stroke and expansion stroke are all the same, was converted to the Atkinson cycle by changing the time of intake value close, combustion pressure reduced due to reduced expansion compression ratio and intake air amount due to decreased effective cycle volume.

Performance Analysis of a Carbon Dioxide(R744) Two-Stage Compression and One-Stage Expansion Refrigeration Cycle ($CO_2$용 2단압축 1단팽창 냉동 사이클의 성능 분석)

  • Roh, G.S.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.70-75
    • /
    • 2009
  • In this paper, cycle performance analysis of R744($CO_2$) two-stage compression and one-stage expansion refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, compressor efficiency, gas cooling pressure, mass flowrate ratio, outlet temperature of gas cooler and evaporating temperature in the carbon dioxide two-stage refrigeration cycle. The main results were summarized as follows : The cooling capacity of two-stage compression and one-stage expansion refrigeration system increases with the increasing superheating degree, compressor efficiency and gas cooling pressure, but decreases with the increasing mass flowrate ratio and evaporating temperature. The compression work of two-stage compression and one-stage expansion refrigeration system increases with the increasing superheating degree, outlet temperature of gas cooler, gas cooling pressure and evaporating temperature, but decreases with the increasing compressor efficiency and mass flowrate ratio. The COP of two-stage compression and one-stage expansion refrigeration system increases with the increasing compressor efficiency, but decreases with the increasing superheating degree, gas cooling pressure, mass flowrate ratio and evaporating temperature. Therefore, superheating degree, compressor efficiency, gas cooling pressure, mass flowrate ratio, outlet temperature of gas cooler and evaporating temperature of R744($CO_2$) two-stage compression and one-stage expansion refrigeration system have an effect on the cooling capacity, compressor work and COP of this system.

  • PDF

A Study on the Problem-Solving Method and Thermal Efficiency Properties at the Time of High Expansion Realization in a 4-Cycle Diesel Engine (4사이클 디젤기관에서 고팽창 실현 시 문제점 해결방안과 열효율 특성에 대한 연구)

  • Jang, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.835-842
    • /
    • 2009
  • The present thesis carried out a research on a compression pressure's reduction phenomenon and its countermeasure according to the thermal efficiency improvement method by a Miller method in 4-cycle low speed diesel engine. In case of retardation of intake valve closing time in a engine, the theoretical heat efficiency shows a remarkably reducing trend when a compression ratio is not compensated. Accordingly, the thermal efficiency showed an increasing trend in case of compensating the compression ratio. Especially, it could be understood that the theoretical heat efficiency at near ABDC $100^{\circ}$ of intake valve closing time in case of compensation of the compression ratio was improved by around 25.1%, and the mean effective pressure was also increased by around 18.6%. Also, as the retardation of intake valve closing time increases, air quantity becomes insufficient due to a backflow phenomenon of intake air and thus thermal efficiency was decreased in a high load operation domain. The solving method of this problem is possible by supercharge. Therefore, in order to improve thermal efficiency by retardation of ntake valve closing time, the thermal efficiency improvement according to low compression is possible when there are a compensation device of a compression ratio and a supercharge device. This is a problem-solving method of low compression and high expansion cycle.

A Study on Refrigeration Performance of Vehicle HVAC System for Sub-Cooling Improvement (서브쿨링향상을 위한 차량공조 시스템의 냉방성능에 관한 연구)

  • 박만재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • The general method which changes sub-cooling of refrigerant is to control the expansion valve in the state of mixing with liquid and gas phase. In this study, the performance of vehicle air conditioning system is to control either changing the expansion valve or adding the sub condenser. Therefore, this research finally is tested in case of the fourth test procedure, the second test was suitable for a valve opening area due to adjusting valve slope in comparison with the other test. The other test except for the second test happened to do liquid back due to the excessively liquified refrigerant into the system. In conclusion, the second test was appeared not to be influenced upon liquid back, and it is to expect positive performance by controlling an expansion valve. Therefore, it will be also useful to research for an increase of compressor efficiency Performance improvement of an air conditioner is to reinforce the suction performance of the evaporator and increase the sub-cooling, which make use of the sub-cooling system.