• Title/Summary/Keyword: Expansion Devices

Search Result 357, Processing Time 0.019 seconds

Performance of an inverter refrigeration system with a change of expansion devices (인버터형 냉동시스템의 팽창장치 변경에 따른 성능특성)

  • 이용택;김용찬;박윤철;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.928-936
    • /
    • 1999
  • An experimental study was performed to investigate characteristics of an inverter driven water-to-water refrigeration system with a variation of compressor frequencies and expansion devices. The frequency of a compressor varied from 30Hz to 75Hz, and performance of the systems applying three different expansion devices such as capillary tube, thermostatic expansion valve(TXV), and electronic expansion valve(EEV) were measured. The load conditions were altered by varying the temperature of the secondary fluid entering condenser and evaporator with a constant flow rate. When the test conditions were deviated from the standard value(rated value), TXV and EEV showed better performance than capillary tube due to optimum control of mass flow rate and superheat. In the present study, it was observed that the variable area expansion device had better performance than constant area expansion device in an inverter refrigeration system due to active control of flow area with a change of compressor frequency and load conditions.

  • PDF

Optimization of Heat Pump Systems (열펌프의 성능 최적화에 관한 연구)

  • Choi, Jong-Min;Yun, Rin;Kim, Yong-Chan
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.22-30
    • /
    • 2007
  • An expansion device plays an important role in optimizing the heat pumps by controlling refrigerant flow and balancing the system pressures. Conventional expansion devices are being gradually replaced with electronic expansion valves due to increasing focus on comfort, energy conservation, and application of a variable speed compressor. In addition, the amount of refrigerant charge in a heat pump is another primary parameter influencing system performance. In this study, the flow characteristics of the expansion devices are analyzed, and the effects of refrigerant charge amount on the performance of the heat pump and the variation of compressor speed are investigated at various operating conditions. Mass flow rate through capillary tube, short tube orifice, and EEV was strongly dependent on the upstream pressure and subcooling. The heat pump system is very sensitive with a variation of refrigerant charge amount. The performance of it can be optimized by adjusting the flow rate through expansion device to maintain a constant superheat at all test conditions.

  • PDF

Optimization of Heat Pump Systems (열펌프의 성능 최적화에 관한 연구)

  • Choi, Jong-Min;Yun, Rin;Kim, Yong-Chan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.538-541
    • /
    • 2007
  • An expansion device plays an important role in optimizing the heat pumps by controlling refrigerant flow and balancing the system pressures. Conventional expansion devices are being gradually replaced with electronic expansion valves due to increasing focus on comfort, energy conservation, and application of a variable speed compressor. In addition, the amount of refrigerant charge in a heat pump is another primary parameter influencing system performance. In this study, the flow characteristics of the expansion devices are analyzed, and the effects of refrigerant charge amount on the performance of the heat pump are investigated at various operating conditions. Cooling capacity of the heat pump system is strongly dependent on load conditions. The heat pump system is very sensitive with a variation of refrigerant charge amount. But, the performance of it can be optimized by adjusting the flow rate through expansion device to maintain a constant superheat at all test conditions.

  • PDF

Capacity Modulation of an Inverter Driven Heat Pump with Expansion Devices

  • Lee, Yong-Taek;Kim, Yong-Chan;Park, Youn-Cheol;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.60-68
    • /
    • 2000
  • An experimental study was peformed to investigate characteristics of an inverter driven heat pump system with a variation of compressor frequency and expansion device. The compressor frequency varied from 30Hz to 75Hz, and the performance of the system ap-plying three different expansion devices such as capillary tube, thermostatic expansion valve(TXV), and electronic expansion valve (EEV) was measured. The load conditions were altered by varying the temperatures of the secondary fluid entering condenser and evaporator with a constant flow rate. When the test condition was deviated from the standard value(rated value), TXV and EEV showed better performance than capillary tube due to optimal control of mass flow rate and superheat. In the present study, it was observed that the variable area expansion device had better performance than constant area expansion device in the inverter heat pump system due to active control of flow area with a change of com-pressor frequency and load conditions.

  • PDF

Characteristics of Refrigerant Flow through Capillary Tubes and Short Tube Orifices

  • Kim, Yong-Chan;Choi, Jong-Min
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.11-21
    • /
    • 1999
  • The capillary tube and short tube orifice have been widely used as an expansion device in the refrigeration and air-conditioning system. To improve the system performance, expansion devices need to be optimized with the components of a refrigeration system. In the present study, a numerical model for a capillary, which could predict the flow rate and properties along a tube, was developed by assuming homogeneous two-phase flow. A semi-empirical flow model for evaluation of the flow rate through a short tube orifice was also developed by using the experimental data. Finally, the results of the numerical model for a capillary was compared with those of the semi-empirical model for a short tube orifice to identify the dominant flow factors for the expansion devices.

  • PDF

Comparison of refrigerant flow through capillary with short tube orifice (모세관과 오리피스 팽창장치의 냉매유량 조절특성의 비교)

  • 김용찬;최종민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.118-128
    • /
    • 1998
  • Capillary and short tube orifice have been widely used as an expansion device in refrigeration and air-conditioning system. To improve the system performance, expansion devices need to be optimized with the components of a refrigeration system. In the present study, a numerical model for a capillary, which can predict properties along a tube and flow rate through a tube, was developed by assuming homogeneous two-phase flow, A semi-empirical flow model that can be used to evaluate the flow rate through a short tube orifice was also developed by summarizing the experimental data. Finally, the results of the numerical model for capillaries were compared with those of the semi-empirical model for short tube orifices to verify dominant flow factors for the expansion devices.

  • PDF

The Performance of a Heat Pump with a Variation of Expansion Valve at Various Charging Conditions (냉매 충전량과 팽창장치 변화에 따른 열펌프 시스템의 성능특성에 관한 연구)

  • 최종민;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.661-666
    • /
    • 2003
  • Constant area expansion devices such as capillary tubes, short tube orifices are being gradually replaced with electronic expansion valves (EEVs) because of increasing focus on comfort and energy conservation. In this study, the performance of a water-to-water heat pump as a function of refrigerant charge is investigated in steady state, cooling mode operation with expansion devices of a capillary tube and an EEV. The performance of the capillary tube system varies drastically according to the change of refrigerant charge amount and inlet temperature of the secondary fluid in the condenser. Cooling capacity and COP of the EEV system show little dependence on the refrigerant charge, while those are strongly dependent on the secondary fluid temperature at the condenser inlet. In general, for a wide range of operating conditions the EEV system shows much higher performance as compared with the capillary tube system. The performance of the EEV system can be optimized by adjusting EEV opening to maintain a constant superheat at all test conditions.

The Effect of Grain Size and Film Thickness on the Thermal Expansion Coefficient of Copper and Silver Thin Films (구리와 은 박막의 열팽창계수에 미치는 결정립 크기와 박막 두께의 영향)

  • Hwang, Seulgi;Kim, Youngman
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1064-1069
    • /
    • 2010
  • Thin films have been used in a large variety of technological applications such as solar cells, optical memories, photolithographic masks, protective coatings, and electronic contacts. If thin films experience frequent temperature changes, thermal stresses are generated due to the difference in the coefficient of thermal expansion between the film and substrate. Thermal stresses may lead to damage or deformation in thin film used in electronic devices and micro-machined structures. Thus, knowledge of the thermomechanical properties of thin films, such as the coefficient of thermal expansion, is an important issue in determining the stability and reliability of the thin film devices. In this study, thermal cycling of Cu and Ag thin films with various microstructures was employed to assess the coefficient of thermal expansion of the films. The result revealed that the coefficient of thermal expansion (CTE) of the Cu and Ag thin films increased with an increasing grain size. However, the effect of film thickness on the CTE did not show a remarkable difference.

Expansion Valves Characteristics for Development of Control System on Air Conditioning and Refrigeration Systems (공조.냉동장치의 제어시스템 개발을 위한 팽창밸브 특성)

  • Kim, J.D.;Jang, J.E.;Yoon, J.I.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.34-40
    • /
    • 1998
  • Performance characteristics of a refrigeration systems with various expansion valves and superheat changes were investigated experimentally. Experimental data have been taken utilizing three different devices; a thermostatic expansion valve, a linear type electronic expansion valve and a solenoid type electronic expansion valve. The data taken from tile three types of expansion valves were discussed with the temperature distribution of each zone in the evaporator and the superheat changes of the evaporator outlet In each zone temperature distribution fluctuated larger with the thermostatic expansion valve than with the electronic expansion valves. The optimum superheat ranged from $5^{\circ}C\;to\;15^{\circ}C$, and the superheat with the thermostatic expansion valve showed hunting phenomenon, which affected the evaporating and condensing temperature.

  • PDF

Synthesis of Nano-Sized Cu Powder by PVA Solution Method and Thermal Characteristics of Sintered Cu Powder Compacts (PVA 용액법을 통한 나노 Cu 분말합성 및 소결체의 열적 특성)

  • Oh, Bok-Hyun;Ma, Chung-Il;Lee, Sang-Jin
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.93-98
    • /
    • 2020
  • Effective control of the heat generated from electronics and semiconductor devices requires a high thermal conductivity and a low thermal expansion coefficient appropriate for devices or modules. A method of reducing the thermal expansion coefficient of Cu has been suggested wherein a ceramic filler having a low thermal expansion coefficient is applied to Cu, which has high thermal conductivity. In this study, using pressureless sintering rather than costly pressure sintering, a polymer solution synthesis method was used to make nano-sized Cu powder for application to Cu matrix with an AlN filler. Due to the low sinterability, the sintered Cu prepared from commercial Cu powder included large pores inside the sintered bodies. A sintered Cu body with Zn, as a liquid phase sintering agent, was prepared by the polymer solution synthesis method for exclusion of pores, which affect thermal conductivity and thermal expansion. The pressureless sintered Cu bodies including Zn showed higher thermal conductivity (180 W/m·K) and lower thermal expansion coefficient (15.8×10-6/℃) than did the monolithic synthesized Cu sintered body.