• Title/Summary/Keyword: Exopolysaccharides production

Search Result 41, Processing Time 0.022 seconds

The Production and Properties of Exopolysaccharides(P0L-11) by Bacillus sp. LK-1 (Bacillus sp. LK-1의 Exopolysaccharides(POL-II) 생산 및 특성)

  • 김양효;안성구;서현호;김혜자;윤병대
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.5
    • /
    • pp.478-485
    • /
    • 1993
  • The strain which produced highly viscous exopolysaccharides (EPS) in liquid culture was selected from soil. The strain was supposed to Bacillus sp. from the results of mophological, biochemical and physiological tests. The medium composition for EPS production was trypton 0.75%, sucrose 4%, CaCO3 0.01%, Winogradsky's nitrogen free mineral medium 5ml/l and pH 7.0. In 2-l jar fernenter, the viscosity of culture broth after 120-hr cultivation time was very high (60, 000 cps) and the amount of EPS was 6.2g/l.

  • PDF

Optimization of Submerged Culture Conditions for Mycelial Growth and Exopolysaccharides Production by Agaricus blazei

  • Kim, Hyun-Han;Na, Jeong-Geol;Chang, Yong-Keun;Chun, Gie-Taek;Lee, Sang-Jong;Jeong, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.944-951
    • /
    • 2004
  • The influences of inoculum size, pH, and medium composition on mycelial growth and exopolysaccharides (EPS) production were investigated in shake flasks and in a bioreactor. The optimum inoculum size for both mycelial growth and EPS production was identified to be 10% (v/v) in shake flask cultures. The optimal initial pH for mycelial growth and EPS production in shake flask cultures were found to be 5.0 and 7.0, respectively. However, the optimal pH was 5.0 for both mycelial growth and EPS production in bioreactor cultures where the pH was regulated. The optimal mass ratio of the two major carbon sources, glucose to dextrin, was 1:4. The optimal mass ratio of the two major nitrogen sources, yeast extract to soy tone peptone, was 2:1. When 500 mg $1^{-1}$ of $MnSO_4-5H_2O$ was added to the bioreactor culture, both mycelial growth and EPS production were enhanced by approximately 10%. Under the optimized conditions, a mycelial biomass of 9.85 g $1^{-1}$ and an EPS concentration of 4.92 g $1^{-1}$ were obtained in 4 days.

Enhanced Production of Exopolysaccharides by Fed-batch Culture of Ganoderma resinaceum DG-6556

  • Kim Hyun-Mi;Paik Soon-Young;Ra Kyung-Soo;Koo Kwang-Bon;Yun Jong-Won;Choi Jang-Won
    • Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.233-242
    • /
    • 2006
  • The objectives of this study were to optimize submerged culture conditions of a new fungal isolate, Ganorderma resinaceum, and to enhance the production of bioactive mycelial biomass and exopolysaccharides (EPS) by fed-batch culture. The maximum mycelial growth and EPS production in batch culture were achieved in a medium containing 10 g/l glucose, 8 g/l soy peptone, and 5 mM $MnCl_2$ at an initial pH 6.0 and temperature $31^{\circ}C$. After optimization of culture medium and environmental conditions in batch cultures, a fed-batch culture strategy was employed to enhance production of mycelial biomass and EPS. Five different EPS with molecular weights ranging from 53,000 to 5,257,000 g/mole were obtained from either top or bottom fractions of ethanol precipitate of culture filtrate. A fed-batch culture of G. resinaceum led to enhanced production of both mycelial biomass and EPS. The maximum concentrations of mycelial biomass (42.2 g/l) and EPS (4.6 g/l) were obtained when 50 g/l of glucose was fed at day 6 into an initial 10 g/l of glucose medium. It may be worth attempting with other mushroom fermentation processes for enhanced production of mushroom polysaccharides, particularly those with industrial potential.

Antimelanogenesis Effects of Fungal Exopolysaccharides Prepared from Submerged Culture of Fomitopsis castanea Mycelia

  • Jin, Juhui;Nguyen, Thi Thanh Hanh;Kim, Changmu;Kim, Doman
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1204-1211
    • /
    • 2019
  • Fungal exopolysaccharides are important natural products having diverse biological functions. In this study, exopolysaccharides from Fomitopsis castanea mycelia (FEPS) were prepared, and the highest mushroom tyrosinase inhibitory activity was found. FEPS were prepared from cultivation broth by ethanol precipitation method. The extraction yield and protein concentration of FEPS were 213.1 mg/l and 0.03%, respectively. FEPS inhibited mushroom tyrosinase with the half maximal inhibitory concentration ($IC_{50}$) of 16.5 mg/ml and dose-dependently inhibited cellular tyrosinase activity (63.9% at $50{\mu}g/ml$, and 83.3% at $100{\mu}g/ml$) in the cell-free extract of SK-MEL-5 human melanoma cell and ${\alpha}$-melanocyte-stimulating hormone (${\alpha}-MSH$)-stimulated melanin formation in intact SK-MEL-5 human melanoma cell. The $IC_{50}$ of FEPS against NO production from RAW264.7 macrophage cells was $42.8{\pm}0.64{\mu}g/ml$. By in vivo study using a zebrafish model, exposure of FEPS at $400{\mu}g/ml$ to dechorionated zebrafish embryos for 18 h decreased the pigment density, compared to that without FEPS-treated control.

Factors Influencing the Production of Water-soluble Endopolysaccharides and Exopolysaccharides from Lentinus lepideus and their Effects on Immune Cytokine Production

  • Lee, Wi-Young;Ahn, Jin-Kwon;Kim, Dong-Hyun;Ka, Kang-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.560-567
    • /
    • 2008
  • An efficient method to produce water-soluble polysaccharides from Lentinus lepideus is described. The productivity of both endopolysaccharides (PPS) and exopolysaccharides (EPS) was compared under various culture conditions. The effect of treating their own PPS and EPS on immune cytokine production was also studied in relation to culture factors. High yield production of EPS required a moderate culture temperature $(25^{\circ}C)$ as well as long culture period (16-20 days). In contrast, PPS production required a high culture temperature $(30^{\circ}C)$ and short culture period (8 days). Most of the carbon sources did not affect polysaccharides and mycelial production except for sucrose. Immune cytokine levels in the EPS treatment varied among carbon sources or culture periods. PPS did not appear to affect much on the production of cytokines, regardless of the culturing factors, except for the culture period. These results suggest that the optimal culture conditions for L. lepideus vary according to culture purposes, and different culture conditions should be used for different targets including mycelial biomass, EPS, and PPS. Whereas the immunomodulating activitiy of EPS appeared to be affected by culture conditions in L. lepideus, that of PPS did not.

Effect of Ammonium Phosphate on Mycelial Growth and Exopolysaccharides Production of Ganoderma lucidum in an Air-Lift Fermenter

  • Lee, Kyu-Min;Lee, Shin-Young;Lee, Hyeon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.726-731
    • /
    • 1999
  • It was discovered that ammonium phosphate in the medium played an important role in both growing mycelium and producing exopolysaccharides (EPS) from G. lucidum. In lower concentration levels of ammonium phosphate (0-3 g/l), an improved mycelial growth was observed by maintaining more filamentous morphology than in high concentrations (5-11 g/l). In addition, it was confirmed by comparing the factual dimension and frequency of the area regarding the mycelial pellets. This must be attributed to limitations of nutrient transfer by maintaining filamentous mycelium during the cultivation in a low ammonium phosphate containing medium. On the other hand, the best EPS production was observed in medium with the absence or low concentration of ammonium phosphate. The shear stress of the culture broth was greatly affected by the shear rate, as compared with that of the culture broth with high ammonium phosphate concentration. The rheological characteristics of the fermentation broth and filtrate worked well according to the Herschel-Bulkley model. It was also found that the morphological changes of the mycelium resulting from the ammonium phosphate concentration directly affected the rheological characteristics of the system and resulted in reversely affecting the EPS production levels. Based on these results, it can be concluded that delicate regulation of the ammonium phosphate concentration in the culture media should be provided in order to obtain optimal mycelial growth and/or EPS production.

  • PDF

Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance

  • Bhagat, Neeta;Raghav, Meenu;Dubey, Sonali;Bedi, Namita
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1045-1059
    • /
    • 2021
  • Various abiotic stressors like drought, salinity, temperature, and heavy metals are major environmental stresses that affect agricultural productivity and crop yields all over the world. Continuous changes in climatic conditions put selective pressure on the microbial ecosystem to produce exopolysaccharides. Apart from soil aggregation, exopolysaccharide (EPS) production also helps in increasing water permeability, nutrient uptake by roots, soil stability, soil fertility, plant biomass, chlorophyll content, root and shoot length, and surface area of leaves while also helping maintain metabolic and physiological activities during drought stress. EPS-producing microbes can impart salt tolerance to plants by binding to sodium ions in the soil and preventing these ions from reaching the stem, thereby decreasing sodium absorption from the soil and increasing nutrient uptake by the roots. Biofilm formation in high-salinity soils increases cell viability, enhances soil fertility, and promotes plant growth and development. The third environmental stressor is presence of heavy metals in the soil due to improper industrial waste disposal practices that are toxic for plants. EPS production by soil bacteria can result in the biomineralization of metal ions, thereby imparting metal stress tolerance to plants. Finally, high temperatures can also affect agricultural productivity by decreasing plant metabolism, seedling growth, and seed germination. The present review discusses the role of exopolysaccharide-producing plant growth-promoting bacteria in modulating plant growth and development in plants and alleviating extreme abiotic stress condition. The review suggests exploring the potential of EPS-producing bacteria for multiple abiotic stress management strategies.

Exopolysaccharide Production in Fed-batch and Continuous Culture by Methylomonas mucosa (Methylomonas mnosa에 의한 Exopolysaccharide의 유가식 및 연속 생산)

  • 장호남;권선훈심상준
    • KSBB Journal
    • /
    • v.8 no.2
    • /
    • pp.164-171
    • /
    • 1993
  • The production of extracellular polysaccharide by Methylomonas mucosa (NRRL B-5696) was investigated. The microorganism uses methanol as the carbon source for their growth and produces exopolysaccharides. The productivity of exopolysaccharides was investigated under various culture modes: batch, fed-batch and continuous culture. In flask culture the growth of cell mass and the production of polysaccharide were inhibited at above 1% (v/v) methanol. At 1%(v/v) methanol maximum specific growth rate was obtained. As C/N ratio (g methanol/g ammonium sulfate) increased, polysaccharide production increased and cells mass decreased. Magnesium ion was also found to be essential for the polysaccharide production. In batch culture the production of polysaccharides was more affected by the specific growth rate than the cell concentration. In fed-batch culture the concentration of polysaccharide was 4 times higher than that of batch culture, but the yield was lower. The productivity of fed-batch with continuous feeding was higher than that of batch or fed-batch with intermittent feeding. This is due to no methanol limitation or inhibition that used to occur in fed-batch culture with intermittent feeding. In continuous culture pure oxygen was supplied to avoid the oxygen limitation. As the dilution rate in- creased up to 0.21 h-1, the yield and productivity increased. The solution viscosity of the produced polysaccharide obtained from above increased exponentially with the concentration of polysaccharide.

  • PDF

Production of Mycelia and Water Soluble Polysaccharides from Submerged Culture of Lentinus lepideus in Bioreactor (생물반응기를 이용한 잣버섯(Lentinus lepideus)의 균사체 및 수용성 다당체 생산특성)

  • Ahn, Jin-Kwon;Ka, Kang-Hyeon;Lee, Wi-Young
    • The Korean Journal of Mycology
    • /
    • v.35 no.1
    • /
    • pp.37-42
    • /
    • 2007
  • The mushroom Lentinus lepideus was used to produce mycelial as well as soluble polysaccharides in bioreactor cultures. To determine optimal submerged culture conditions, both growth characteristics and water soluble polysaccharides production were compared among four different types of bioreactor and culture conditions. For the production of mycelial biomass, the following bioreactors were proven to be effective in decreasing order: an external-loop type air-lift bioreactor (ETAB; 7g/l), a balloon type air bubble bioreactor (BTBB; 6.2g/l), a stirrer type bioreactor (STB; 6g/l), and a column type air bubble bioreactor (CTBB; 5g/l). Maxiaml production of water soluble exopolysaccharides (EPS; 0.62g/l) and endopolysaccharides (PPS; 7.7%) could also be obtained from BTBB. The mycelial biomass increased with increase in glucose concentration from 15g/l to 75g/l in the media. In contrast, PPS contents in the cells decreased with increase in glucose concentration in the media, showing the highest PPS content (7%) at 15g/l. Among different medium feeding types, fed-batch culture based on concentration control in media (10g/l) produced higher mycelia than fed-batch culture based on volume control of media (5.8g/l) or batch culture (3.4g/l). EPS production was also higher in fed-batch culture based on medium concentration control than that in other feeding types.