• Title/Summary/Keyword: Exopolysaccharides (EPS)

Search Result 48, Processing Time 0.027 seconds

The Production and Properties of Exopolysaccharides(P0L-11) by Bacillus sp. LK-1 (Bacillus sp. LK-1의 Exopolysaccharides(POL-II) 생산 및 특성)

  • 김양효;안성구;서현호;김혜자;윤병대
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.5
    • /
    • pp.478-485
    • /
    • 1993
  • The strain which produced highly viscous exopolysaccharides (EPS) in liquid culture was selected from soil. The strain was supposed to Bacillus sp. from the results of mophological, biochemical and physiological tests. The medium composition for EPS production was trypton 0.75%, sucrose 4%, CaCO3 0.01%, Winogradsky's nitrogen free mineral medium 5ml/l and pH 7.0. In 2-l jar fernenter, the viscosity of culture broth after 120-hr cultivation time was very high (60, 000 cps) and the amount of EPS was 6.2g/l.

  • PDF

Structural and Molecular Characterization of Extracellular Polysaccharides Produced by a New Fungal Strain, Trichoderma erinaceum DG-312

  • JOO JI-HOON;YUN JONG-WON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1250-1257
    • /
    • 2005
  • Two groups of exopolysaccharides (designated as Fr-I EPS and Fr-II EPS) were isolated from the culture filtrate of new fungal strain Trichoderma erinaceum DG-312 by Sepharose CL-6B chromatography. The structures of the exopolysaccharides were investigated using gas chromatography (GC), Fourier transform-infrared (FT-IR) spectroscopy, GCMS analysis, and NMR. GC analysis indicated that Fr-I EPS was composed of mainly mannose ($78.9\%$) and galactose ($21.1\%$), whereas Fr-II EPS contained mannose ($68.4\%$), galactose ($26.2\%$), and glucose ($5.4\%$). In the anomeric region ($950-700cm_{-1}$) of the FT-IR spectrum, both EPSs exhibited obvious characteristic absorption of $810\;cm_{-1}$, indicating the existence of mannose. The spectra of $\alpha-and\;\beta$-configurations were assigned at 880 and $914\;cm_{-1}$, respectively. The results of GC-MS analyses confirmed that both EPSs were complex heteropolysaccharides with a ($1{\rightarrow}3$)-linked mannan backbone. The C-1 region that appeared in the $^{13}C-NMR$ spectra of these EPSs indicated a typical anomeric carbon signal. The Fr-I EPS showed two anomeric carbon signals at 102.6 and 99.6 ppm, whereas the Fr-II EPS displayed four anomeric carbon signals at 102.5, 99.6, 98.5, and 94.3 ppm. The molecular characteristics of the EPSs were further investigated using a size exclusion chromatography/multi-angle laser light scattering (SEC/MALLS) system. The SEC/MALLS system revealed that the average molar masses of the EPSs were $6.592{\times}10^{4}$ (Fr-I EPS) and $1.920{\times}10^{4}$ (Fr-II EPS) g/mol, and the molecular conformation of both EPSs in aqueous solution was random coils.

Anti-diabetic Effect of the Exopolysaccharides (EPS) Produced from Cordyceps sinensis on ob/ob Mice (제 2형 당뇨쥐에서 동충하초로부터 생산된 세포외 다당류의 항당뇨 효과)

  • Choi, Jang-Won
    • KSBB Journal
    • /
    • v.26 no.1
    • /
    • pp.33-40
    • /
    • 2011
  • Anti-diabetic effect of the exopolysaccharides (EPS) produced from submerged mycelial culture of Cordyceps sinensis (Cs) was studiedin a type II diabetic animal model (C57BL/6J ob/ob). This study was designed to determine whether Cs-EPS improves clinical symptoms of type II diabetes in ob/ob mice. After Cs-EPS treatment at doses of 200 mg/kg body weight, the fasting blood glucose levels decreased by 47% after 7 weeks compared with those of the control mice. According to the oral glucose tolerance test, the glucose levels recovered its baseline after 120 min in Cs-EPS-treated mice, although the blood glucose levels increased significantly after 30 min. On the other hand, the control group (not-treated) did not recovered its initial level of glucose after 120 min. Furthermore, food intake, body weight, total plasma cholesterol and triglyceride concentrations in ob/ob mice treated with Cs-EPS were significantly decreased, compared with those in control ob/ob mice. Cs-EPS treatment increased significantly the plasma insulin level and the expression of leptin mRNA in adipose tissue of Cs-EPS-treated ob/ob mice. From these results, it is demonstrated that Cs-EPS could be effective for regulating normal blood glucose levels by increasing the amounts of plasma insulin and leptin expression in ob/ob mice, indicating that this compound could be a candidate material as a dietary supplement to control hyperglycemia in patients suffering from type II diabetes.

Isolation of Exopolysaccharide-Producing Lactic Acid Bacteria from Pa-Kimchi and Characterization of Exopolysaccharides

  • Yun Ji Kang;Tae Jin Kim;Min Jae Kim;Ji Yeon Yoo;Jeong Hwan Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.2
    • /
    • pp.157-166
    • /
    • 2023
  • Three lactic acid bacteria (LAB) producing exopolysaccharides (EPSs) were isolated from Pa (green onion)-kimchi, and identified as Weissella confusa (SKP 173), Weissella cibaria (SKP 182), and Leuconostoc citreum (SKP 281), respectively by 16S rRNA gene sequencing. The yields of EPS were 21.27, 18.53, and 15.4 g/l for EPS from SKP 173, 182, and 281, respectively when grown in MRS broth containing sucrose (5%, w/v). Total sugar contents were 64.39, 62.84, and 65.16% (w/w) for EPS from SKP 173, 182, and 281, respectively while the protein contents were 0.33, 0.31, and 0.25% (w/w), respectively. EPSs from W. confusa SKP 173 and W. cibaria SKP 182 contained glucose only but EPS from L. citreum SKP 281 contained glucose and glucitol. Viscosities of the 2% (w/w) freeze-dried EPS solution were 9.60, 8.00, and 8.20 centipoise (cP) for EPS from SKP 173, 182, and 281, respectively. Viscosities of culture grown in MRS broth with 5% sucrose (no glucose) were 92.98, 57.19, and 18.8 cP, respectively. The average molecular weights of EPSs were larger than 2 × 107 Da. Fourier transform infrared spectroscopy (FT-IR) analyses of EPSs showed typical carbohydrate peaks, suggesting that the EPSs consisted of pyranose saccharides with α-(1,6) and α-(1,3) glycosidic linkages. L. citreim SKP 281 was used as the starter for yogurt fermentation, and EPS production was confirmed.

Rhizobacterial Exopolysaccharides Elicit Induced Resistance on Cucumber

  • Park, Kyung-Seok;Kloepper, Joseph W.;Ryu, Choong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1095-1100
    • /
    • 2008
  • The role of exopolysaccharides (EPSs) from a plant growth-promoting rhizobacterium, Burkholderia gladioli IN26, on elicitation of induced systemic resistance was investigated. A purified EPS induced expression of PR-1a::GUS on tobacco and elicited induced resistance against Colletotrichum orbiculare on cucumber. The maximum level of disease protection was noted when seeds were soaked in 200 ppm of the EPS. Our results indicate that EPS from specific rhizobacteria can elicit induced resistance and suggest that bacterial EPS might be a useful elicitor of resistance under field conditions.

Optimization of Submerged Culture Conditions for Mycelial Growth and Exopolysaccharides Production by Agaricus blazei

  • Kim, Hyun-Han;Na, Jeong-Geol;Chang, Yong-Keun;Chun, Gie-Taek;Lee, Sang-Jong;Jeong, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.944-951
    • /
    • 2004
  • The influences of inoculum size, pH, and medium composition on mycelial growth and exopolysaccharides (EPS) production were investigated in shake flasks and in a bioreactor. The optimum inoculum size for both mycelial growth and EPS production was identified to be 10% (v/v) in shake flask cultures. The optimal initial pH for mycelial growth and EPS production in shake flask cultures were found to be 5.0 and 7.0, respectively. However, the optimal pH was 5.0 for both mycelial growth and EPS production in bioreactor cultures where the pH was regulated. The optimal mass ratio of the two major carbon sources, glucose to dextrin, was 1:4. The optimal mass ratio of the two major nitrogen sources, yeast extract to soy tone peptone, was 2:1. When 500 mg $1^{-1}$ of $MnSO_4-5H_2O$ was added to the bioreactor culture, both mycelial growth and EPS production were enhanced by approximately 10%. Under the optimized conditions, a mycelial biomass of 9.85 g $1^{-1}$ and an EPS concentration of 4.92 g $1^{-1}$ were obtained in 4 days.

Enhanced Production of Exopolysaccharides by Fed-batch Culture of Ganoderma resinaceum DG-6556

  • Kim Hyun-Mi;Paik Soon-Young;Ra Kyung-Soo;Koo Kwang-Bon;Yun Jong-Won;Choi Jang-Won
    • Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.233-242
    • /
    • 2006
  • The objectives of this study were to optimize submerged culture conditions of a new fungal isolate, Ganorderma resinaceum, and to enhance the production of bioactive mycelial biomass and exopolysaccharides (EPS) by fed-batch culture. The maximum mycelial growth and EPS production in batch culture were achieved in a medium containing 10 g/l glucose, 8 g/l soy peptone, and 5 mM $MnCl_2$ at an initial pH 6.0 and temperature $31^{\circ}C$. After optimization of culture medium and environmental conditions in batch cultures, a fed-batch culture strategy was employed to enhance production of mycelial biomass and EPS. Five different EPS with molecular weights ranging from 53,000 to 5,257,000 g/mole were obtained from either top or bottom fractions of ethanol precipitate of culture filtrate. A fed-batch culture of G. resinaceum led to enhanced production of both mycelial biomass and EPS. The maximum concentrations of mycelial biomass (42.2 g/l) and EPS (4.6 g/l) were obtained when 50 g/l of glucose was fed at day 6 into an initial 10 g/l of glucose medium. It may be worth attempting with other mushroom fermentation processes for enhanced production of mushroom polysaccharides, particularly those with industrial potential.

Factors Influencing the Production of Water-soluble Endopolysaccharides and Exopolysaccharides from Lentinus lepideus and their Effects on Immune Cytokine Production

  • Lee, Wi-Young;Ahn, Jin-Kwon;Kim, Dong-Hyun;Ka, Kang-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.560-567
    • /
    • 2008
  • An efficient method to produce water-soluble polysaccharides from Lentinus lepideus is described. The productivity of both endopolysaccharides (PPS) and exopolysaccharides (EPS) was compared under various culture conditions. The effect of treating their own PPS and EPS on immune cytokine production was also studied in relation to culture factors. High yield production of EPS required a moderate culture temperature $(25^{\circ}C)$ as well as long culture period (16-20 days). In contrast, PPS production required a high culture temperature $(30^{\circ}C)$ and short culture period (8 days). Most of the carbon sources did not affect polysaccharides and mycelial production except for sucrose. Immune cytokine levels in the EPS treatment varied among carbon sources or culture periods. PPS did not appear to affect much on the production of cytokines, regardless of the culturing factors, except for the culture period. These results suggest that the optimal culture conditions for L. lepideus vary according to culture purposes, and different culture conditions should be used for different targets including mycelial biomass, EPS, and PPS. Whereas the immunomodulating activitiy of EPS appeared to be affected by culture conditions in L. lepideus, that of PPS did not.

Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance

  • Bhagat, Neeta;Raghav, Meenu;Dubey, Sonali;Bedi, Namita
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1045-1059
    • /
    • 2021
  • Various abiotic stressors like drought, salinity, temperature, and heavy metals are major environmental stresses that affect agricultural productivity and crop yields all over the world. Continuous changes in climatic conditions put selective pressure on the microbial ecosystem to produce exopolysaccharides. Apart from soil aggregation, exopolysaccharide (EPS) production also helps in increasing water permeability, nutrient uptake by roots, soil stability, soil fertility, plant biomass, chlorophyll content, root and shoot length, and surface area of leaves while also helping maintain metabolic and physiological activities during drought stress. EPS-producing microbes can impart salt tolerance to plants by binding to sodium ions in the soil and preventing these ions from reaching the stem, thereby decreasing sodium absorption from the soil and increasing nutrient uptake by the roots. Biofilm formation in high-salinity soils increases cell viability, enhances soil fertility, and promotes plant growth and development. The third environmental stressor is presence of heavy metals in the soil due to improper industrial waste disposal practices that are toxic for plants. EPS production by soil bacteria can result in the biomineralization of metal ions, thereby imparting metal stress tolerance to plants. Finally, high temperatures can also affect agricultural productivity by decreasing plant metabolism, seedling growth, and seed germination. The present review discusses the role of exopolysaccharide-producing plant growth-promoting bacteria in modulating plant growth and development in plants and alleviating extreme abiotic stress condition. The review suggests exploring the potential of EPS-producing bacteria for multiple abiotic stress management strategies.

Effect of Ammonium Phosphate on Mycelial Growth and Exopolysaccharides Production of Ganoderma lucidum in an Air-Lift Fermenter

  • Lee, Kyu-Min;Lee, Shin-Young;Lee, Hyeon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.726-731
    • /
    • 1999
  • It was discovered that ammonium phosphate in the medium played an important role in both growing mycelium and producing exopolysaccharides (EPS) from G. lucidum. In lower concentration levels of ammonium phosphate (0-3 g/l), an improved mycelial growth was observed by maintaining more filamentous morphology than in high concentrations (5-11 g/l). In addition, it was confirmed by comparing the factual dimension and frequency of the area regarding the mycelial pellets. This must be attributed to limitations of nutrient transfer by maintaining filamentous mycelium during the cultivation in a low ammonium phosphate containing medium. On the other hand, the best EPS production was observed in medium with the absence or low concentration of ammonium phosphate. The shear stress of the culture broth was greatly affected by the shear rate, as compared with that of the culture broth with high ammonium phosphate concentration. The rheological characteristics of the fermentation broth and filtrate worked well according to the Herschel-Bulkley model. It was also found that the morphological changes of the mycelium resulting from the ammonium phosphate concentration directly affected the rheological characteristics of the system and resulted in reversely affecting the EPS production levels. Based on these results, it can be concluded that delicate regulation of the ammonium phosphate concentration in the culture media should be provided in order to obtain optimal mycelial growth and/or EPS production.

  • PDF