• Title/Summary/Keyword: Exogenous hormones

Search Result 53, Processing Time 0.031 seconds

Effects of Salicylic Acid and Indole Acetic Acid Exogenous Applications on Induction of Faba Bean Resistance against Orobanche crenata

  • Briache, Fatima Zahra;Ennami, Mounia;Mbasani-Mansi, Joseph;Lozzi, Assia;Abousalim, Abdelhadi;El Rodeny, Walid;Amri, Moez;Triqui, Zine El Abidine;Mentag, Rachid
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.476-490
    • /
    • 2020
  • The parasitic weed, Orobanche crenata, is one of the most devastating constraint for faba bean production in Mediterranean regions. Plant host defense induction was reported as one of the most appropriate control methods in many crops. The aim of this study was to elucidate the effect of salicylic acid (SA) and indole acetic acid (IAA) on the induction of faba bean resistance to O. crenata under the field and controlled experimental conditions. Both hormones were tested on two contrasting faba bean genotypes: Giza 843 (partially resistant to O. crenata) and Lobab (susceptible) at three different application methods (seed soaking, foliar spray, and the combination of both seed soaking and foliar spray). Soaking seeds in SA or IAA provided the highest protection levels reaching ~75% compared to the untreated control plants. Both elicitors limited the chlorophyll content decrease caused by O. crenata infestation and increased phenolic compound production in host plants. Phenylalanine ammonia lyase, peroxidase, and polyphenol oxidase activities were stimulated in the host plant roots especially in the susceptible genotype Lobab. The magnitude of induction was more obvious in infested than in non-infested plants. Histological study revealed that both SA and IAA decreased the number of attached O. crenata spikes which could be related to specific defense responses in the host plant roots.

Clonal Propagation in Commiphora Wightii (Arnott.) Bhandari

  • Mishra, Dhruv Kumar;Kumar, Devendra
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.2
    • /
    • pp.218-225
    • /
    • 2014
  • Studies were carried out to standardize and develop a suitable macro-propagation technology for large scale production of superior clonal stock through stem cuttings in Commiphora wightii Arnott (Bhandari), a data deficient medicinal plant of arid region. For the purpose, three experiments were conducted. The first experiment was tried to elucidate the impact of various cutting diameters (0.50-0.75 cm, 0.75-1.00 cm, 1.00-1.50 cm, and >1.50 cm) in combination with varying growing conditions (sunlight, shade house and mist chamber) on shoot sprouting and rooting without using exogenous plant growth regulators. Cutting diameter (size 0.75-1.00 cm) in mist chamber has shown maximum sprouting (90.00%) and rooting (73.33%), primary root (6.67) and secondary root (16.67) followed by 1.00-1.51 cm in mist chamber. Minimum sprouting (40.00%), rooting (33.33%), number of shoot (1.33), primary root (1.00) and number of secondary root (1.00) was recorded in cutting diameter (size >1.50 cm) in sunlight. Second experiment was performed to find out optimum growth regulator concentration of rooting hormone (100, 200, 500 and 1000 ppm) of Indole-3-acetic acid (IAA) and Indole-3-butyric Acid (IBA) on adventitious root formation on cuttings diameter (size 0.25-0.50 cm) in comparison to control. Maximum rooting percentage (93.33%) was recorded in 200 ppm followed by 500 ppm (86.66%) of IBA as compared to control, which showed only 60 per cent sprouting. Third experiment was performed with newly formed juvenile micro-cuttings treated with varying concentrations of IAA and IBA. The juvenile cuttings (size 6-10 cm, basal dia <0.25 cm) were selected as micro-cuttings. The cuttings treated with IBA (500 ppm) showed 64.30% rooting as compared to other treatments. Results of above experiments indicate that cuttings (size 0.75-1.00 cm dia) may be developed in mist chamber for better performance. While using heavier cuttings, no growth promoting hormones is required however; growth regulator 200 ppm concentration of IBA rooting hormone was observed optimum for promoting macro-propagation in stem cuttings of lower diameter class (0.25-0.50 cm).

Nutritional and Hormonal Induction of Fatty Liver Syndrome and Effects of Dietary Lipotropic Factors in Egg-type Male Chicks

  • Choi, Y.I.;Ahn, H.J.;Lee, B.K.;Oh, S.T.;An, B.K.;Kang, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1145-1152
    • /
    • 2012
  • This experiment was conducted with male chicks to investigate the influence of hormones and nutrients on the development of fatty liver syndrome (FLS) as well as the effects of dietary lipotropic factors on hepatic fat accumulation and lipogenic enzyme gene expression. A total of two-hundred sixteen 4-wk-old Hy-Line male chicks were divided into six groups and fed an experimental diet (T1, low-energy diet with low levels of lipotropic factors; T2, high-energy diet with low levels of lipotropic factors; T3 and T5, low-energy diet with high levels of lipotropic factors; T4 and T6, high-energy diet with high levels of lipotropic factors) for six weeks. The chicks in T5 and T6 groups were treated with intramuscular injections of estradiol benzoate for three days prior to biopsy and clinical analysis of FLS. Chicks treated with estrogen had significantly greater liver weights than untreated chicks. The abdominal fat contents were increased in chicks consuming high-energy diets as compared to those consuming low-energy diets. Treatment with estrogen significantly increased the concentrations of serum cholesterol, triacylglycerol and phospholipid (p<0.05). The hepatic triacylglycerol levels were tenfold higher in the estrogen treated chicks than in the untreated chicks. There were no significant differences in malondialdehyde levels between the treatment groups. Estrogen treatment dramatically increased the levels of fatty acid synthetase, acetyl-CoA carboxylase and ApoB mRNA. The results indicated that treatment with exogenous estrogen in growing male chicks induced hepatic fat accumulation, which might be partially due to increased lipogenic enzyme gene expression.

Effect of Exogenous Hormones on Spermiation in the Starry Flounder Platichthys stellatus (외인성 호르몬 처리가 강도다리 (Platichthys stellatus)의 배정에 미치는 영향)

  • Lim, Han-Kyu;Kim, Sung-Yeon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.6
    • /
    • pp.374-379
    • /
    • 2007
  • Two experiments were designed to examine short-term effects of human chorionic gonadotropin (hCG), and long-term effects of gonadotropin-releasing hormone agonist (GnRHa), $17{\alpha}-hydroxyprogesterone$ (17P), and $17{\alpha},20{\beta}-dihydroxy-4-pregnen-3-one\;(17,20{\beta}P)$, alone or in combination, on milt production of the starry flounder Platichthys stellatus. In the first experiment, fish were injected with either 200 IU hCG/kg body weight or the same volume of marine fish Ringer's solution (MFRS). In the second experiment, each fish was implanted with a blank cholesterol pellet (control), $200\;{\mu}g$ GnRHa, $500\;{\mu}g$ 17P, or $100\;{\mu}g\;17,20{\beta}P/kg$ body weight alone or in combination. In the first experiment, hCG injection resulted in an increase in the expressible milt volume and a decrease in the spermatocrit (Sct). After pellet implantation in the second experiment, the milt volume was increased in males treated with GnRHa, GnRHa+17P, or $GnRHa+17,20{\beta}P$. On day 7 after hormone pellet implantation, the milt volume began to increase, and on day 14, the milt volume in the $GnRHa+500\;{\mu}g$ 17P group was significantly higher than that in the control group. Compared with the control group, the hormone pellet-treated groups had a significant reduction in the mean Sct and sperm concentration (Sc) at day 7 after pellet implantation, while there were no differences in total sperm number. The results suggest that increases in milt volume are generally associated with decreases in Sct and SC, suggesting that the main mechanism for the increase in milt volume was milt hydration.

Altered Cultivar Resistance of Kimchi Cabbage Seedlings Mediated by Salicylic Acid, Jasmonic Acid and Ethylene

  • Lee, Young Hee;Kim, Sang Hee;Yun, Byung-Wook;Hong, Jeum Kyu
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.323-329
    • /
    • 2014
  • Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner.

24-Epibrassinolide Modulate Cellular and Organogenic Response of Explants of Brassica Species, in vitro Culture

  • Rocha Andrea da S.R.;Coutinho Camila M.;Braga Eugenia J.B.;Peters Jose A.;Binsfeld Pedro Canisio
    • Journal of Plant Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.161-167
    • /
    • 2005
  • Brassinosteroids are steroidal plant hormones and are known to modulate physiological and cellular response in a wide range of plant species. Considerable insights has been achieved of the physiological role of brassinosteroid in Brassica species in the past few years, but their effect on direct organogenesis has not been extensively studied. In this sense, under optimal basal media and growth conditions we tested the cellular and organogenic response of 24-epibrassinolide (EBL) in a variable concentration (0.1 to $5.0\;{\mu}M$) and Zeatin (Z) (1.0 to $100\;{\mu}M$) and their synergic effect on hypocotyl explants of cauliflower and broccoli. The isolated EBL accelerated cell elongation and promotes direct organogenesis. One micromolar EBL + $10\;{\mu}M$ of Z was the most efficient combination for cell elongation, cell differentiation as well as for organogenesis. A suppressing effect on root induction was confirmed for all the tested hormone levels. The general results indicate a synergic effect of EBL-Z and EBL potentates Zeatin activity, at least in certain tissues. Besides de genetic factors, we can speculate that the natural hormone concentration in the explants might affect the responses by application of exogenous growth regulators. Experiments with new plant growth regulators, like brassinolide, are important aiming to maximize or accelerate plant regeneration for in vitro multiplication or for genetic transformation.

Involvement of Pyridoxine/Pyridoxamine 5′- Phosphate Oxidase (PDX3) in Ethylene-Induced Auxin Biosynthesis in the Arabidopsis Root

  • Kim, Gyuree;Jang, Sejeong;Yoon, Eun Kyung;Lee, Shin Ae;Dhar, Souvik;Kim, Jinkwon;Lee, Myeong Min;Lim, Jun
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1033-1044
    • /
    • 2018
  • As sessile organisms, plants have evolved to adjust their growth and development to environmental changes. It has been well documented that the crosstalk between different plant hormones plays important roles in the coordination of growth and development of the plant. Here, we describe a novel recessive mutant, mildly insensitive to ethylene (mine), which displayed insensitivity to the ethylene precursor, ACC (1-aminocyclopropane-1-carboxylic acid), in the root under the dark-grown conditions. By contrast, mine roots exhibited a normal growth response to exogenous IAA (indole-3-acetic acid). Thus, it appears that the growth responses of mine to ACC and IAA resemble those of weak ethylene insensitive (wei) mutants. To understand the molecular events underlying the crosstalk between ethylene and auxin in the root, we identified the MINE locus and found that the MINE gene encodes the pyridoxine 5′-phosphate (PNP)/pyridoxamine 5′-phosphate (PMP) oxidase, PDX3. Our results revealed that MINE/PDX3 likely plays a role in the conversion of the auxin precursor tryptophan to indole-3-pyruvic acid in the auxin biosynthesis pathway, in which TAA1 (TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1) and its related genes (TRYPTOPHAN AMINOTRANSFERASE RELATED 1 and 2; TAR1 and TAR2) are involved. Considering that TAA1 and TARs belong to a subgroup of PLP (pyridoxal-5′-phosphate)-dependent enzymes, we propose that PLP produced by MINE/PDX3 acts as a cofactor in TAA1/TAR-dependent auxin biosynthesis induced by ethylene, which in turn influences the crosstalk between ethylene and auxin in the Arabidopsis root.

Effect of Exogenous Hormones on Anthocyanin Accumulation and Phenylalaine Ammonia-lyase and Chalcone-synthase Activity in the Hairy Root Cultures of Raphanus sativus cv. Chungpihongsim (청피홍심무우의 모상근 배양에서 안토시아닌의 생성 및 PAL, CHS의 활성에 미치는 호르몬의 영향)

  • 안준철;백윤웅조혜선황백
    • KSBB Journal
    • /
    • v.9 no.1
    • /
    • pp.26-34
    • /
    • 1994
  • When effects of exogenous hormone on hairy root cultures of Raphanus sativs cv. Chungpihongsim examined, the highest anthocyanin synthesis and disorganization were observed when 2, 4-D was supplemented to the culture medium Cytokinins showed early weak induction after transfer and ABA showed inhibitory effect and GA3 showed no effects in anthocyanin synthesis. Hormones except for 2, 4-D in 1 mg/$\ell$ concentration did not induce disorganization of hairy root and retarded growth of hairy root. Time-course changes in anthocyanin synthesis, phenylalanine ammonia-lyase activity and chalcone synthase activity were examined in culture condition contalning 2, 4-D and kinetin. In a medium containing 2, 4-D, anthocyanin synthesis began to increase on the 9th day and reaching maxima on the 18th day after transfer. Maximum peak of PAL activity appeared on the 3-9th day and another minor peak appeared on the 18th day. CHS activity increased from 9th day, reaching maximum on the 18th day and remained at a relatively high level for culture period. In a medium containing kinetin, anthocyanin synthesis increased temporarily on the 6-9th days, early days after transfer and maintained at a low level for remaining culture period. Peak of PAL activity appeared on the 6th day and CHS activity increased from the 6th days, reaching maxima about 18th day and remained at a relatively high level. In particular, addition of kinetin after preculture in hormone free medium for 2 weeks which was thought of wound healing period showed no effects in anthocyanin synthesis. This results showed that stimulation of anthocyanin synthesis by 2, 4-D and kinetin was meaningfully connected with changes of PAL, CHS activity, and then suggested rate-limiting role of CHS on anthocyanin synthesis in that there is close correlation between anthocyanin synthesis and changes of CHS activity in time-course. Besides, it is considered that cytoklnins involving kinetin stimulated anthocyanin synthesis be due to "wound response" by cutting of young roots, and that difference in time-course peak and PAL, CHS activities expressed by 2, 4-D and kinetin result from occurrence of isozyme which have different regulatory mechanism.mechanism.

  • PDF

Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion

  • Lee, Ko-Eun;Radhakrishnan, Ramalingam;Kang, Sang-Mo;You, Young-Hyun;Joo, Gil-Jae;Lee, In-Jung;Ko, Jae-Hwan;Kim, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1467-1475
    • /
    • 2015
  • The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth.

[ $P2X_2$ ] Receptor Activation Potentiates PC12 Cell Differentiation Induced by ACAP in Acidic Environments

  • Lee, Myung-Hoon;Nam, Jin-Sik;Ryu, Hye-Myung;Yoo, Min;Lee, Moon-Hee
    • Biomedical Science Letters
    • /
    • v.13 no.3
    • /
    • pp.197-206
    • /
    • 2007
  • P2X receptors are membrane-bound ion channels that conduct $Na^+,\;K^+$, and $Ca^{2+}$ in response to ATP and its analogs. There are seven subunits identified so far ($P2X_1-P2X_7$). $P2X_2$ receptors are known to be expressed in a wide range of organs including brains and adrenal grands. PC12 cells are originated from adrenal grand and differentiated by nerve growth factor or pituitary adenylate cyclase activating poly peptide (PACAP). Previous studies indicate that $P2X_2$ receptor activation in PC12 cells couples to $Ca^{2+}-dependent$ release of catecholamine and ATP. It is known that acidic pH potentiates ATP currents at $P2X_2$ receptors. This leads to a hypothesis that $P2X_2$ receptors may play an important role in PC12 cell differentiation, one of the characteristics of which is neurite outgrowth, induced by the hormones under lower pH. In the present study, we isolated several clones which potentiate neurite outgrowth by PACAP in acidic pH (6.8), but not in alkaline pH (7.6). RT-PCR and electrophysiology data indicate that these clones express only functional $P2X_2$ receptors in the absence or presence of PACAP for 3 days. Potentiation of neurite outgrowth resulted from PACAP (100 nM) in acidic pH is inhibited by the two P2X receptor antagonists, suramin and PPADS ($100\;{\mu}M)$ each), and exogenous exprerssion of ATP-binding mutant $P2X_2$ receptor subunit ($P2X_2[K69A]$). However, acid sensing ion channels (ASICs) are not involved in PACAP-induced neurite outgrowth potentiation in lower pH since treatments of an inhibitor of ASICs, amyloride ($10\;{\mu}M$), did not give any effects to neurite extension. The vesicular proton pump ($H^+-ATPase$) inhibitor, bafilomycin (100 nM), reduced neurite extension indicating that ATP release resulted from $P2X_2$ receptor activation in PC12 cells is needed for neurite outgrowth. These were confirmed by activation of mitogen activated protein kinases, such as ERKs and p38. These results suggest roles of ATP and $P2X_2$ receptors in hormone-induced cell differentiation or neuronal synaptogenesis in local acidic environments.

  • PDF