• Title/Summary/Keyword: Exogenous enzyme

Search Result 110, Processing Time 0.029 seconds

Effects of Polyamines on DNA Synthesis in Nicotiana tabacum L. Suspension Cultured Cells (담배(Nicotiana tabacum L.) 현탁배양 세포에서 DNA 합성에 미치는 Polyamine의 효과)

  • 남경희
    • Journal of Plant Biology
    • /
    • v.36 no.1
    • /
    • pp.19-27
    • /
    • 1993
  • Effects of polyamines on DNA synthesis were studied in synchronized culture of Nicotiana tabacum L. When DFMO and DFMA, inhibitors of ornithine decarboxylase and arginine decarboxylase, respectively were initially applied to the cells, the polyamine contents were rapidly dropped and [methyl-3H] thymidine incorporation into DNA was markedly reduced during the early stage of culture period. Inhibition of DNA synthesis, however, was partially reversed when these inhibitors were applied simultaneously with putrescine. In addition, exogenous administration of putrescine also increased the DNA synthesis during the all over the culture period. In vitro activity of DNA polymerase from Nicotiana tabacum L. was promoted by increasing concentrations of polyamines in the reaction mixture. Maximal activity was shown at 5 mM putrscine, 0.5 mM spermidine and spermine, respectively. Lack of Mg2+ ion in the reaction buffer resulted in an inhibition of the enzyme activity by about 30%. The inhibition could not be completely reversed by application of polyamines at optimal concentrations. These results suggest that polyamines promote the DNA synthesis in vivo and in vitro by stabilizing the DNA-helix upon binding to negatively charged groups on DNA or increasing the activity of DNA polymerase in Nicotiana tabacum L.

  • PDF

Cytochrome P-450 3A4 proximal promoter activity by histone deacetylase inhibitor in HepG2 cell.

  • Kim, Ja-Young;Ahn, Mee-Ryung;Sheen, Yhun-Yhong
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.120.2-120.2
    • /
    • 2003
  • Cytochrome P-450 3A4 (CYP3A4) is major enzyme in human liver, the role of this is detoxification and metabolizing more than 50% clinical drugs in use. Expression of CYP3A4 is transciptionally regulated by the Pregnenolone X receptor (PXR), of which human form is Steroid and Xenobiotics receptor (SXR). SXR is activated by wide range of endogenous and exogenous compounds, and then induces CYP3A4 gene expression. In the previous study, it has been known that proximal promoter (-864 to +64) does not response to chemical inducers such as pregnenolone 16a-carbonitrile (PCN), Rifampicin, Estrogen in terms of transcription of CYP 3A4 in cultured cells. (omitted)

  • PDF

Expression and Characterization of Fibrinolytic Enzyme Activity During Earthworm Tail Regeneration (지렁이 꼬리 재생시 발현되는 피브리노겐 분해효소의 활성과 특성에 관한 연구)

  • Tak, Eun-Sik;Cho, Sung-Jin;Kim, Jae-Young;Lee, Kyu-Seok;Park, Soon-Cheol
    • The Korean Journal of Soil Zoology
    • /
    • v.4 no.2
    • /
    • pp.101-106
    • /
    • 1999
  • Fibrinolytic enzyme is thought to be involved in extracellular matrix remodeling during regeneration. We investigated the expression and characterization fibrinolytic enzyme activity during earthworm tail regeneration. Electrophoretic analysis of fibrinolytic enzymes induced during regeneration revealed that at least seven types of fibrinolytic enzymes were expressed, which had molecular weight of 12, 19, 23, 27, 32, 45 and 58 kDa, respectively. These fibrinolytic enzyme activities were dramatically increased within 1 day after amputation. These activities were maintained by 7 days postamputation, followed by decrease to control level from 14 days after amputation. Alltypes of fibrinolytic enzyme activities were inhibited by treatment of PMSF and aprotinin, and were insensitive to EDTA and exogenous Ca$^{2+}$. These results indicate that the fibrinolytic enzymes are serineproteinase. Other characteristics including specificities for extracellular matrix proteins are under investigation. Based on these results, we are trying to find out the relationship among expression of proteinases, extracellular matrix remodeling, and dedifferentiation, which are believed to be essential processes during regeneration.

  • PDF

Exogenous Lytic Activity of SPN9CC Endolysin Against Gram-Negative Bacteria

  • Lim, Jeong-A;Shin, Hakdong;Heu, Sunggi;Ryu, Sangryeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.803-811
    • /
    • 2014
  • Concerns over drug-resistant bacteria have stimulated interest in developing alternative methods to control bacterial infections. Endolysin, a phage-encoded enzyme that breaks down bacterial peptidoglycan at the terminal stage of the phage reproduction cycle, is reported to be effective for the control of bacterial pathogenic bacteria. Bioinformatic analysis of the SPN9CC bacteriophage genome revealed a gene that encodes an endolysin with a domain structure similar to those of the endolysins produced by the P1 and P22 coliphages. The SPN9CC endolysin was purified with a C-terminal oligo-histidine tag. The endolysin was relatively stable and active over a broad temperature range (from $24^{\circ}C$ to $65^{\circ}C$). It showed maximal activity at $50^{\circ}C$, and its optimum pH range was from pH 7.5 to 8.5. The SPN9CC endolysin showed antimicrobial activity against only gram-negative bacteria and functioned by cutting the glycosidic bond of peptidoglycan. Interestingly, the SPN9CC endolysin could lyse intact gram-negative bacteria in the absence of EDTA as an outer membrane permeabilizer. The exogenous lytic activity of the SPN9CC endolysin makes it a potential therapeutic agent against gram-negative bacteria.

Intestinal Alkaline Phosphatase: Potential Roles in Promoting Gut Health in Weanling Piglets and Its Modulation by Feed Additives - A Review

  • Melo, A.D.B.;Silveira, H.;Luciano, F.B.;Andrade, C.;Costa, L.B.;Rostagno, M.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2016
  • The intestinal environment plays a critical role in maintaining swine health. Many factors such as diet, microbiota, and host intestinal immune response influence the intestinal environment. Intestinal alkaline phosphatase (IAP) is an important apical brush border enzyme that is influenced by these factors. IAP dephosphorylates bacterial lipopolysaccharides (LPS), unmethylated cytosine-guanosine dinucleotides, and flagellin, reducing bacterial toxicity and consequently regulating toll-like receptors (TLRs) activation and inflammation. It also desphosphorylates extracellular nucleotides such as uridine diphosphate and adenosine triphosphate, consequently reducing inflammation, modulating, and preserving the homeostasis of the intestinal microbiota. The apical localization of IAP on the epithelial surface reveals its role on LPS (from luminal bacteria) detoxification. As the expression of IAP is reported to be downregulated in piglets at weaning, LPS from commensal and pathogenic gram-negative bacteria could increase inflammatory processes by TLR-4 activation, increasing diarrhea events during this phase. Although some studies had reported potential IAP roles to promote gut health, investigations about exogenous IAP effects or feed additives modulating IAP expression and activity yet are necessary. However, we discussed in this paper that the critical assessment reported can suggest that exogenous IAP or feed additives that could increase its expression could show beneficial effects to reduce diarrhea events during the post weaning phase. Therefore, the main goals of this review are to discuss IAP's role in intestinal inflammatory processes and present feed additives used as growth promoters that may modulate IAP expression and activity to promote gut health in piglets.

Metabolic Activation of Ester- and Amide-Type Drugs by Carboxylesterases

  • Satoh, Tetsuo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.71-71
    • /
    • 1993
  • Carboxylesterase is widely distributed in the tissues of vertebrates, insects, plants and mycobacteria. Among various tissues of animals and humans, the highest esterase activity with various substrates is found in the liver. Kidney has moderate carboxylesterase activity in the proximal tubules. Considerable esterase activity is also found in the small intestine epithet elial cells and serum of mammals. Besides these tissues, carboxylesterase has been found in the lung, testis, adipose tissue, nasal mucosa and even in the central nervous system. Hepatic microsomal carboxylesterase catalyzes the hydrolysis of a wide variety of endogenous and exogenous compounds such as carboxylester, thioester and aromatic amide. Since carboxylesterases are important for metabolic activation of prodrugs and detoxification of xenobiotics, differences in substrate specificity and immunological properties of this enzyme are important in connection with choosing a suitable laboratory animal for the evaluation of biotransformation and toxicity of drugs. On the other hand, liver, kidney, intestine and serum were found to contain multiple forms of carboxylesterases in animal species and humans. In fact, we have purified more than fifteen isoforms of carboxylesterases from microsomes of liver, kidney and intestinal mucosa of nine animal species and humans. and characteristics of these isoforms were compared each other in terms of their physical and immunochemical properties. On the other hand, we have reported that hepatic microsomal carboxylesterases are induced by many exogenous compounds such as phenobarbital, polycyclic aromatic hydrocarbons, Aroclor 1254, aminopyrine and clofibrate. Later, we showed that some isoforms of hepatic carboxylesterase were induced by glucocorticoids such as dexamethasone and 16 ${\alpha}$-carbonitrile, but other isoforms were rather inhibited by these compounds. These findings indicate that involvement of carboxylesterases in the metabolism and toxicity of drugs should be explained by the isoforms involved. Since 1991, we have carried out detailed research investigating the types of carboxylesterases involved in the metabolic activation of CPT-11, a derivative of camptothecin, to the active metabolite, SN-38. The results obtained strongly suggest that some isoforms of carboxylesterase of liver microsomes and intestinal mucosal membrane are exclusively involved in CPT-11 metabolism. In this symposium, the properties of carboxylesterase isoforms purified from liver, kidney and intestine of animal species and humans are outlined. In addition, metabolism of CPT-11, a novel antitumor agent, by carboxylesterases in relation to the effectiveness will also be discussed.

  • PDF

RNA Editing Enzyme ADAR1 Suppresses the Mobility of Cancer Cells via ARPIN

  • Min Ji Park;Eunji Jeong;Eun Ji Lee;Hyeon Ji Choi;Bo Hyun Moon;Keunsoo Kang;Suhwan Chang
    • Molecules and Cells
    • /
    • v.46 no.6
    • /
    • pp.351-359
    • /
    • 2023
  • Deamination of adenine or cytosine in RNA, called RNA editing, is a constitutively active and common modification. The primary role of RNA editing is tagging RNA right after its synthesis so that the endogenous RNA is recognized as self and distinguished from exogenous RNA, such as viral RNA. In addition to this primary function, the direct or indirect effects on gene expression can be utilized in cancer where a high level of RNA editing activity persists. This report identified actin-related protein 2/3 complex inhibitor (ARPIN) as a target of ADAR1 in breast cancer cells. Our comparative RNA sequencing analysis in MCF7 cells revealed that the expression of ARPIN was decreased upon ADAR1 depletion with altered editing on its 3'UTR. However, the expression changes of ARPIN were not dependent on 3'UTR editing but relied on three microRNAs acting on ARPIN. As a result, we found that the migration and invasion of cancer cells were profoundly increased by ADAR1 depletion, and this cellular phenotype was reversed by the exogenous ARPIN expression. Altogether, our data suggest that ADAR1 suppresses breast cancer cell mobility via the upregulation of ARPIN.

Effect of Exogenous Fibrolytic Enzyme Application on the Microbial Attachment and Digestion of Barley Straw In vitro

  • Wang, Y.;Ramirez-Bribiesca, J.E.;Yanke, L.J.;Tsang, A.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.1
    • /
    • pp.66-74
    • /
    • 2012
  • The effects of exogenous fibrolytic enzymes (EFE; a mixture of two preparations from Trichoderma spp., with predominant xylanase and ${\beta}$-glucanase activities, respectively) on colonization and digestion of ground barley straw and alfalfa hay by Fibrobacter succinogenes S85 and Ruminococcus flavefaciens FD1 were studied in vitro. The two levels (28 and 280 ${\mu}g$/ml) of EFE tested and both bacteria were effective at digesting NDF of hay and straw. With both substrates, more NDF hydrolysis (p<0.01) was achieved with EFE alone at 280 than at 28 ${\mu}g$/ml. A synergistic effect (p<0.01) of F. succinogenes S85 and EFE on straw digestion was observed at 28 but not 280 ${\mu}g$/ml of EFE. Strain R. flavefaciens FD1 digested more (p<0.01) hay and straw with higher EFE than with lower or no EFE, but the effect was additive rather than synergistic. Included in the incubation medium, EFE showed potential to improve fibre digestion by cellulolytic ruminal bacteria. In a second batch culture experiment using mixed rumen microbes, DM disappearance (DMD), gas production and incorporation of $^{15}N$ into particle-associated microbial N ($^{15}N$-PAMN) were higher (p<0.001) with ammoniated (5% w/w; AS) than with native (S) ground barley straw. Application of EFE to the straws increased (p<0.001) DMD and gas production at 4 and 12 h, but not at 48 h of the incubation. EFE applied onto S increased (p<0.01) $^{15}N$-PAMN at 4 h only, but EFE on AS increased (p<0.001) $^{15}N$-PAMN at all time points. Prehydrolysis increased (p<0.01) DMD from both S and AS at 4 and 12 h, but reduced (p<0.01) $^{15}N$-PAMN in the early stage (4 h) of the incubation, as compared to non-prehydrolyzed samples. Application of EFE to barley straw increased rumen bacterial colonization of the substrate, but excessive hydrolytic action of EFE prior to incubation decreased it.

Effects of dietary enzyme cocktail on growth performance, intestinal morphology, and nutrient digestibility of weaned pigs

  • Kim, Yunkang;Baek, Jangryeol;Jang, Kibeom;Kim, Junsu;Kim, Sheena;Mun, Daye;Kim, Byeonghyeon;Kim, Younghwa;Park, Juncheol;Choe, Jeehwan;Song, Minho
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.4
    • /
    • pp.513-518
    • /
    • 2017
  • Soybean, one of most widely used swine feed component in the world, contains non-starch polysaccharides (NSP). The digestive system of weaned pigs is not yet fully developed, and thus weaned pigs cannot easily digest diets based on corn and soybean meal. Dietary exogenous enzymes supplementation has been intensively investigated to assist digestion of anti-nutritional factors, such as NSP. This experiment was conducted to investigate the effects of dietary enzyme cocktail on growth performance, intestinal morphology, and nutrient digestibility of weaned pigs. A total 36 weaned pigs ($5.92{\pm}0.48kg\;BW$; 28 d old) were randomly allotted to 2 dietary treatments (3 pigs/pen, 6 replicates/treatment) in a randomized complete block design. The dietary treatments were a typical diet based on corn and soybean meal (CON) and CON with 0.05% enzyme cocktail (Cocktail; mixture of xylanase, ${\alpha}-amylase$, protease, ${\beta}-glucanase$, and pectinase). Pigs were fed their respective diets for 6 wk. Growth performance, morphology of ileum, apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of dry matter, crude protein, and energy of weaned pigs were measured. No significant differences (p > 0.05) were observed for growth performance for the duration of the experimental period, and morphology of ileum, and nutrient digestibility between CON and Cocktail treatment groups. Therefore, the results from the current study indicated that enzyme cocktail supplementation in diets had no influence on growth performance, intestinal morphology, and nutrient digestibility of weaned pigs.

Expression Study of a Recombinant Plasmid containing Dipeptidyl Peptidase-4 Gene in E. coli: A Plausible Application for Celiac Disease Patients to Digest Gluten

  • Lee, Yeonjae;Kang, Ryan;Kwon, Jenna;Jo, Kyuhee;Im, Jungbin;Jung, Sangwook;Lee, DongHyun;Lee, Juhyeon;Lee, Jeong-Sang
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.101-111
    • /
    • 2018
  • Celiac disease (CD) is an immune-mediated enteropathy of small intestine diagnosed in both childhood and adulthood. CD is caused by gluten, which produces gliadorphin during its digestion. The enzyme dipeptidyl peptidase-4 (DPP4) breaks gliadorphin down nevertheless the last tripeptide remains and eventually inhibits DPP4, thus slowing down its process. Therefore, the idea is to produce an additional DPP4 enzyme which is crucial. Consequently, the functional DPP4 gene was cloned into pCDNA3 intermediate (FLAG+DPP4) vector and finally a recombinant plasmid pSB1C3 (Andersons promoters+FLAG+DPP4) was constructed using synthetic biology. Normally, a DPP4 inhibitor is used as a cure for diabetes. Another important concern was overexpression of DPP4, which might lead to diabetes, accordingly the work was also performed for the regulation of the DPP4 gene expression. In this regard, three types of Anderson promoters (strong, moderate and weak) were utilized to study the control overexpression. This is the first report of idealistic trial for control the exogenous DPP4 gene-expression by molecular biologic tools.