• Title/Summary/Keyword: Exogenous DNA

Search Result 137, Processing Time 0.033 seconds

Production of Transgenic Animals by the Testis-Mediated Gene Transfer I. Production of Transgenic Rats and Mice (정소실질내 유전자 도입에 의한 형질저환동물의 생산 I. 형질전환 흰쥐와 생쥐의 생산)

  • 윤창현;장규태;오석두;주학진;박미령;이병오
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 1998
  • Many trials have been made to produce transgenic animals using sperm cells as a vector transferring foreign DNA into eggs, but reliable results are yet to be obtained (Brinster et al., 1989; Lavitrano et al., 1989; Bachiller et al., 1991; Sato et al., 1994). Recently, one of author(SO) demonstrated that mouse blastocysts derived from eggs fertilized by spermatozoa of male mice single injected with liposome-DNA complexes within the testis expressed thegene (Ogawa et al., 1995.) Here we report that a single injection of liposome-encapsulated DNAs into the testis of either male rats or mice resulted in successfully gene transfer to the postpartum progeny. The expression of mRNA derived from transgenes was also demonstrated in transgenic animals thus obtained. Further, the transmission of the exogenous gene to the descedants was confirmed in one line of transgenic rat up to F4 generation, indicating that the gene was stably incorporated into the germ line. Thus, direct single injection of foreign DNA into the testis provides a novel and convenient means to generate transgenic animals.

  • PDF

Elevated expression of exogenous RAD51 enhances the CRISPR/Cas9-mediated genome editing efficiency

  • Seo Jung Park;Seobin Yoon;Eui-Hwan Choi;Hana Hyeon;Kangseok Lee;Keun Pil Kim
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.102-107
    • /
    • 2023
  • Genome editing using CRISPR-associated technology is widely used to modify the genomes rapidly and efficiently on specific DNA double-strand breaks (DSBs) induced by Cas9 endonuclease. However, despite swift advance in Cas9 engineering, structural basis of Cas9-recognition and cleavage complex remains unclear. Proper assembly of this complex correlates to effective Cas9 activity, leading to high efficacy of genome editing events. Here, we develop a CRISPR/Cas9-RAD51 plasmid constitutively expressing RAD51, which can bind to single-stranded DNA for DSB repair. We show that the efficiency of CRISPR-mediated genome editing can be significantly improved by expressing RAD51, responsible for DSB repair via homologous recombination (HR), in both gene knock-out and knock-in processes. In cells with CRISPR/Cas9-RAD51 plasmid, expression of the target genes (cohesin SMC3 and GAPDH) was reduced by more than 1.9-fold compared to the CRISPR/Cas9 plasmid for knock-out of genes. Furthermore, CRISPR/Cas9-RAD51 enhanced the knock-in efficiency of DsRed donor DNA. Thus, the CRISPR/Cas9-RAD51 system is useful for applications requiring precise and efficient genome edits not accessible to HR-deficient cell genome editing and for developing CRISPR/Cas9-mediated knockout technology.

Induction of Megakaryocytic Differentiation in Chronic Myelogenous Leukemia Cell K562 by 3-Hydrogenkwadaphnin

  • Meshkini, Azadeh;Yazdanparast, Razieh
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.944-951
    • /
    • 2007
  • 3-Hydrogenkwadaphnin (3-HK) is a daphnane-type diterpene ester isolated from Dendrostellera lessertii (Thymelaeaceae) with high differentiation and apoptotic potency in leukemic cells without any measurable adverse effects on normal cells (Moosavi et al., 2005b). In this study, we report that 3-HK (12 nM) has the ability to cease proliferation, induce differentiation and apoptosis in chronic myelogenous leukemia (CML) K562 cell line. The treated cells lost erythroid properties and differentiated along the megakaryocytic lineage based on the morphological features apparent after Wright-Giemsa staining, DNA content analysis and the expression of cell surface marker glycoprotein IIb as analyzed by flow cytometry. Moreover, using Hoechst 33258 and Annexin V double staining indicated the occurrence of apoptosis among the treated cells. On the other hand, restoration of the depleted GTP pool size by exogenous addition of guanosine ($50{\mu}M$) reduced the effect of the drug regarding the extent of differentiation while no further enhancement of 3-HK effect was obtained by addition of exogenous hypoxanthine ($100{\mu}M$). These interesting results necessitate further investigation regarding the mechanism of action of this unique anti-leukemic agent.

Molecular Characterization of a Bombyx mori Protein Disulfide Isomerase(bPDI) (누에 배양세포로부터 분리한 Protein Disulfide Isomerase 유전자의 발현 특성)

  • 구태원;윤은영;황재삼;강석우;권오유
    • Journal of Life Science
    • /
    • v.11 no.5
    • /
    • pp.415-422
    • /
    • 2001
  • Many secreted proteins have disulfide bonds that are important for their structure and function. Protein disulfide isomerase (PDI, EC 5.3.1.4.), an enzyme that catalyzes the formation and rearrangement of thiol/disulfide exchange reactions, is a resident of the endoplasmic reticulum (ER). The subcellular localization and its function as catalyst of disulfide bond formation in the biosynthesis of secretory and cell membrane proteins suggest that PDI plays a key role in the secretory pathway. We have isolated a cDNA encoding protein disulfide isomerase from Bombyx mori(bPDI). It has been characterized under ER stress conditions (dominantly induced by calcium ionophore A23187, tunicamycin and DTT), which is known to cause an accumulation of unfolded proteins in the ER. Furthermore, It has also been examined for tissue distribution(pronounced at the fat body), hormonal regulation (juvenile hormone, insulin and juvenile +transferrin; however, it is not effected by transferrin alone), and the effect of exogenous bacteria (peak at 16 h after infection) on the bPDI mRNA expression. The results suggest that bPDI is a member of the ER stress protein group, and it may play an important role in exogenous bacterial infection in fat body, and that homones regulate its expression.

  • PDF

Genetic Transformation of the Yeast Dekkera/Brettanomyces bruxellensis with Non-Homologous DNA

  • Miklenic, Marina;Stafa, Anamarija;Bajic, Ana;Zunar, Bojan;Lisnic, Berislav;Svetec, Ivan-Kresimir
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.674-680
    • /
    • 2013
  • Yeast Dekkera/Brettanomyces bruxellensis is probably the most common contaminant in wineries and ethanol production processes. The considerable economic losses caused by this yeast, but also its ability to produce and tolerate high ethanol concentrations, make it an attractive subject for research with potential for industrial applications. Unfortunately, efforts to understand the biology of D. bruxellensis and facilitate its broader use in industry are hampered by the lack of adequate procedures for delivery of exogenous DNA into this organism. Here we describe the development of transformation protocols (spheroplast transformation, LiAc/PEG method, and electroporation) and report the first genetic transformation of yeast D. bruxellensis. A linear heterologous DNA fragment carrying the kanMX4 sequence was used for transformation, which allowed transformants to be selected on plates containing geneticin. We found the spheroplast transformation method using 1M sorbitol as osmotic stabilizer to be inappropriate because sorbitol strikingly decreases the plating efficiency of both D. bruxellensis spheroplast and intact cells. However, we managed to modify the LiAc/PEG transformation method and electroporation to accommodate D. bruxellensis transformation, achieving efficiencies of 0.6-16 and 10-20 transformants/${\mu}g$ DNA, respectively. The stability of the transformants ranged from 93.6% to 100%. All putative transformants were analyzed by Southern blot using the kanMX4 sequence as a hybridization probe, which confirmed that the transforming DNA fragment had integrated into the genome. The results of the molecular analysis were consistent with the expected illegitimate integration of a heterologous transforming fragment.

Development and Expression of Porcine Embryos by Direct Injection of Sperm Treated with Exogenous DNA (외래유전자 도입정자를 이용한 돼지 체외성숙 난포란의 Intracytoplasmic Sperm Injection (ICSI) 후 후기 배로의 발달율과 외래유전자의 발현에 관한 연구)

  • 정기화;조성근
    • Journal of Embryo Transfer
    • /
    • v.17 no.1
    • /
    • pp.45-53
    • /
    • 2002
  • The main goal of this study was to produce transgenic porcine embryos by direct injection of sperm-mediated exogenous DNA. Spermatozoa (6$\times$10$^{6}$ sperms of final concentration) were mixed with pcDNA LAC Z (20 ng/$\mu$l) and subjected into electroporation (300~750 volts, 25 $\mu$F, 0.4 cm electrode). After sperm injection, the oocytes were activated electrically (1.7 KV/cm, 30$\mu$sec, single pulse) in 0.3 M mannitol solution or not. The sperm injected eggs were cultured in NCSU 23 medium (0.4% BSA) at 39$^{\circ}C$, 5% $CO_2$ in air fur 144 h. The rates of cleavage and development into blastocyst stage in activation group were significantly higher than those of non-activation group (79.6% and 24.1% vs. 46.3% and 14.4%, respectively, p<0.05). Control oocytes and shame injection were developed to blastocysts low (2.5%). Sixty five (27.1%) out of 240 embryos observed in activation and non-activation groups were showed positive by X-gal staining. However, all embryos in both groups were expressed partial or mosaic pattern. These results suggested that electrical stimulation far oocytes activation after sperm injection enhances the incidence of both fertilization and development fellowing sperm injection in the pig. Our study also suggested that sperm-mediated transfer of exogenous DNA by ICSI would be used as a valuable tool for the production of transgenic porcine embryos.

Expression of Human Liver 3,4-Catechol estrogens UDP-Glucuronosyltransferase cDNA in COS 1 Cells

  • Ahn, Mee-Ryung;Owens, Ida-S.;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.465-470
    • /
    • 1997
  • The human cDNA clone UDPGTh2, encoding a liver UDP-glucuronosyltransferase (UDPGT), was isolated from a .gamma.gt 11 cDNA library by hybridization to mouse transferase cDNA clone, UDPGTm1. The two clones had 74% nlicleotide sequence identities in the coding region. UDPGTh2 encoded a 529 amino acid protein with an amino terminus membrane-insertion signal peptide and a carboxyl terminus membrane-spanning region. In order to establish substrate specificity, the clone was inserted into the pSVL vector (pUDPGTh2) and expressed in COS 1 cells. Sixty potential substrates were tested using cells transfected with pUDPGTh2. The order of relative substrate activity was as follows: 4-hydroxyestrone > estriol >2-hydroxyestriol > 4-hydroxyestradiol > $6{\alpha}$-hydroxyestradiol >$5{\alpha}$-androstane-$3{\alpha}$, $11{\beta}$, $17{\beta}$-triol=5${\beta}$-androstane-$3{\alpha}$ ${\beta}$, $17{\beta}$-triol. There were only trace amounts of gulcuronidation of 2-hydroxyestradiol and 2-hydroxyestrone, and in contrast to other cloned transferase, no gulcuronidation of either the primary estrogens and androgens (estrone, $17{\beta}$estradiol/testosterone, androsterone) or any of the exogenous substrates tested was detected. A lineweaver-Burk plot of the effect of 4-hydroxystrone concentration on the velocity of glucuronidation showed an apparent Km of $13{\mu}M$. The unique specificity of this transferase might play an important role in regulating the level and activity of these potent and active estrogen metabolites.

  • PDF

The Cytotoxic and Anti-proliferative Effects of 3-Hydrogenkwadaphnin in K562 and Jurkat Cells Is Reduced by Guanosine

  • Moosavi, Mohammad Amin;Yazdanparast, Razieh;Sanati, Mohammad Hasan
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.391-398
    • /
    • 2005
  • 3-hydrogenwadaphnin (3-HK) is a new daphnane-type diterpene ester isolated from Dendrostellera lessertii with strong anti-tumoral activity in animal models and in cultures. Here, prolonged effects of this new agent on proliferation and viability of several different cancerous cell lines were evaluated. Using [$^3H$]thymidine incorporation, it was found that the drug inhibited cell proliferation and induced G1/S cell cycle arrest in leukemic cells 24 h after a single dose treatment. The cell viability of Jurkat cells was also decreased by almost 10%, 31% and 40% after a single dose treatment (7.5 nM) at 24, 48 and 72 h, respectively. The drug-treated cells were stained with acridine orange/ethidium bromide to document the chromatin condensation and DNA fragmentation. These observations were further confirmed by detection of DNA laddering pattern in the agarose gel electrophoresis of the extracted DNA from the treated cells. Treatment of K562 cells with the drug at 7.5, 15 and 30 nM caused apoptosis in 25%, 45% and 65% of the cells, respectively. Exogenous addition of $25-50\;{\mu}M$ guanosine and/or deoxyguanosine to the cell culture of the drug-treated cells restored DNA synthesis, released cell arrest at G1/S checkpoint and decreased the apoptotic cell death caused by the drug. These observations were not made using adenosine. However, the drug effects on K562 cells were potentiated by hypoxanthine. Based on these observations, perturbation of GTP metabolism is considered as one of the main reasons for apoptotic cell death by 3-HK.

Lymphocyte DNA Damage and Anti-Oxidative Parameters are Affected by the Glutathione S-Transferase (GST) M1 and T1 Polymorphism and Smoking Status in Korean Young Adults (흡연 여부에 따른 Glutathione S-transferase (GST) M1 및 T1 유전자 다형성이 우리나라 젊은 성인의 임파구 DNA 손상과 항산화 영양상태 지표들 간의 관련성에 미치는 영향)

  • Han, Jeong-Hwa;Lee, Hye-Jin;Kang, Myung-Hee
    • Journal of Nutrition and Health
    • /
    • v.44 no.5
    • /
    • pp.366-377
    • /
    • 2011
  • Glutathione S-transferase (GST) is a multigene family of phase II detoxifying enzymes that metabolize a wide range of exogenous and endogenous electrophilic compounds. GSTM1 and GSTT1 gene polymorphisms may account for inter-individual variability in coping with oxidative stress. We investigated the relationships between the level of lymphocyte DNA and antioxidative parameters and the effect on GST genotypes. GSTM1 and GSTT1 were characterized in 301 young healthy Korean adults and compared with oxidative stress parameters such as the level of lymphocyte DNA, plasma antioxidant vitamins, and erythrocyte antioxidant enzymes in smokers and non smokers. GST genotype, degree of DNA damage in lymphocytes, erythrocyte activities of superoxide dismutase, catalase, and glutathione peroxidase (GSH-Px), and plasma concentrations of total radical-trapping antioxidant potential (TRAP), vitamin C, ${\alpha}$- and ${\gamma}$-tocopherol, ${\alpha}$- and ${\beta}$-carotene, and cryptoxanthin were analyzed. Lymphocyte DNA damage assessed by the comet assay was higher in smokers than that in non-smokers, but the levels of plasma vitamin C, ${\beta}$-carotene, TRAP, erythrocyte catalase, and GSH-Px were lower than those of non-smokers (p < 0.05). Lymphocyte DNA damage was higher in subjects with the GSTM1- or GSTT1-present genotype than those with the GSTM1-present or GSTT1- genotype. No difference in erythrocyte antioxidant enzyme activities, plasma TRAP, or vitamin levels was observed in subjects with the GSTM1 or GSTT1 genotypes, except ${\beta}$-carotene. Significant negative correlations were observed between lymphocyte DNA damage and plasma levels of TRAP and erythrocyte activities of catalase and GSH-Px after adjusting for smoking pack-years. Negative correlations were observed between plasma vitamin C and lymphocyte DNA damage only in individuals with the GSTM1-present or GSTT1- genotype. The interesting finding was the significant positive correlations between lymphocyte DNA damage and plasma levels of ${\alpha}$-carotene, ${\beta}$-carotene, and cryptoxanthin. In conclusion, the GSTM1- and GSTT1-present genotypes as well as smoking aggravated antioxidant status through lymphocyte DNA damage. This finding confirms that GST polymorphisms could be important determinants of antioxidant status in young smoking and non-smoking adults. Consequently, the protective effect of supplemental antioxidants on DNA damage in individuals carrying the GSTM1- or GSTT1-present genotypes might show significantly higher values than expected.

Enhancement of Lycopene Production in Escherichia coli by Optimization of the Lycopene Synthetic Pathway

  • KANG MIN-JUNG;YOON SANG-HWAL;LEE YOUNG-MI;LEE SOOK-HEE;KIM JU-EUN;JUNG KYUNG-HWA;SHIN YONG-CHUL;KIM SEON-WON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.880-886
    • /
    • 2005
  • Using carotenoid genes of Erwinia herbicola, metabolic engineering was carried out for lycopene production with the pAC-LYCO4 plasmid, which was composed of a chromosomal DNA fragment of E. herbicola containing the crtE, crtB, and crtI genes under the control of the tetracycline promoter and the ipi gene of Haematococcus pluvialis with the trc promoter. Plasmid pAC-LYCm4 was constructed for efficient expression of the four exogenous genes using a strong RBS sequence and the same tetracycline promoter. The optimized expression construct of pAC-LYCm4 increased Iycopene production three times as compared with pAC-LYCO4. pAC-LYCm5 containing ispA behind the four exogenous genes was constructed. There was no significant difference in Iycopene production and cell growth between pAC-LYCm4 and pAC-LYCm5. FPP synthase encoded by ispA was not rate-limiting for Iycopene production. Each gene of crtE, crtB, crtI, and ipi was overexpressed, using pBAD-crtE, pBAD-crtIB, and pBAD-ipiHPI, in addition to their expression from pAC-LYCm4. However, there was no increase oflycopene production with the additional overexpression of each exogenous gene. The four exogenous genes appeared to be not rate-limiting in cells harboring pAC-LYCm4. When pDdxs, pBAD24 containing dxs, was introduced into cells harboring lycopene synthetic plasmids, lycopene production of pAC-LYCO4, pAC-LYCm4, and pAC-LYCm5 was increased by 4.7-, 2.2-, and 2.2-fold, respectively. Lycopene production of pBAD-DXm4 containing crtE, crtB, crtI, ipi, and dxs was 5.2 mg/g dry cell weight with $0.2\%$ arabinose, which was 8.7-fold higher than that of the initial strain with pAC-LYC04. Therefore, the present study showed that proper regulation of a metabolically engineered pathway is important for Iycopene production.