• Title/Summary/Keyword: Exit opening rate

Search Result 10, Processing Time 0.026 seconds

Helium-Air Exchange Flours Through Partitioned Opening and Two-Opening

  • Kang, Tae-il
    • Nuclear Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.251-259
    • /
    • 1997
  • This paper describes experimental investigations of helium-air exchange flows through partitioned opening and too-opening. Such exchange flows may occur following rupture accident of stand pipe in high temperature engineering test reactor. A test vessel with the too types of small opening on top of test cylinder is used for experiments. An estimation method of mass increment is developed to measure the exchange now rate. Upward flow of the helium and downward flow of the air in partitioned opening system interact out of entrance and exit of the opening. Therefore, an experiment with too-opening system is made to investigate effect of the fluids interaction of partitioned opening system. As a result of comparison of the exchange flow rates between too types of the opening system, it is demonstrated that the exchange flow rate of the two-opening system is larger than that of the partitioned opening system because of absence of the effect of fluids interaction.

  • PDF

Study on the Injection Characteristics using Injection Rate in a Direct-injection Gasoline Injector with Multi-hole (분사율을 이용한 직접 분사식 다공 가솔린 인젝터의 분사특성 연구)

  • Park, Jeonghyun;Shin, Dalho;Park, Su Han
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.20-28
    • /
    • 2016
  • This paper presents an experimental study on the GDI injector with Bosch method. The injection characteristics, such as the injection quantity, the injection rate, the maximum velocity of the nozzle exit and the injection delay were studied through the change of the injection pressure, the tube pressure and energizing duration in injection rate measurement device using nheptane. The injection quantity is increased by increasing injection pressure, decreasing tube pressure or increasing energizing duration. As the difference of the injection quantity changed, the shape of injection rate was moved with a constant form. The maximum velocity of the nozzle exit showed a tendency to increase as the injection pressure is increased. However, tube pressure did not affect. Overall, it was confirmed that the closing delay is longer than the opening delay in all conditions. As the injection pressure increased, the result has a tendency to decrease the closing delay, it did not affect the opening delay. Reduction of the closing delay showed the reduction of the injection duration. the tube pressure and energizing duration did not affect the injection delay (opening delay, closing delay).

Helium-Air Exchange Flow with Fluids Interaction (유체간섭을 동반하는 헬륨과 공기의 치환류)

  • T.I. Kang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.372-380
    • /
    • 1997
  • This paper describes experimental investigations of helium-air exchange flows through parti¬tioned opening and two-opening. Such exchange flows may occur following rupture accident of stand pipe in high temperature gas cooled reactor. A test vessel with the two types of small open¬ing on top of test cylinder is used for experiments. An estimation method of mass increment is developed and applied to measure the exchange flow rate. A technique of flow visualization by Mach-Zehnder interferometer is provided to recognize the exchange flows. In the case of exchange flow through the partitioned opening, flow passages of upward flow of the helium and downward flow of the air within the opening are separated by vertical partition, and the two flows interact out of entrance and exit of the opening. Therefore, an experiment of the exchange flow through two-opening is made to investigate effect of the fluids interaction of the partitioned opening sys¬tem. As a result of comparison of the exchange flow rates between the two types of the opening system, it is found that the exchange flow rate of the two-opening system is larger than that of the partitioned opening system due to absence of the effect of fluids interaction. Finally, the fluids interaction between the upward and downward flows through the partitioned opening is found to be an important factor on the helium-air exchange flow.

  • PDF

A Study on the Cold Flow Characteristics of a Flue Gas Recirculation Burner with Both Outlets Opening (양쪽 출구가 트인 배기가스 재순환 버너의 냉간 유동 특성에 관한 연구)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.7-12
    • /
    • 2018
  • Thermal NOx is generated in a high temperature environment in a combustion facilities. Exhaust gas recirculation method is widely used among various methods for reducing nitrogen oxides in combustion devices. In the present study, the computational fluid dynamic analysis was accomplished to elucidate the cold flow characteristics in the flue gas recirculation burner with both outlets opening. Because the reciculation pipes is installed toward the tangential direction, the swirling flow is formulated in the burner and the phenomenon of the reverse flow creation is detected at the center area of circular burner. We are confirmed that this is the similar trend with the burner with one side outlet closed. From the present study, it was seen that the recirculated inflow from both recirculated burner outlets increased by about 5% compared to the burner with one side outlet opening. At the outlet located at the exhaust gas recirculation pipe inlet(gas exit 1), the inlet flow was formed in the entire region. At the opposite outlet(gas exit 2), the total flow was discharged, but the center part of the burner was observed to have a reverse flow. The flow rate at the gas exit 2 was 3 ~ 5 times larger than the flow rate at the gas exit 1.

The effect of exit opening rate on exhaust gas pressure, temperature, and engine performance (배기 출구 개도율이 배기 압력과 온도 및 엔진 성능에 미치는 영향)

  • Kim, Cheol-Jeong;Choi, Byung-Chul;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • Multiple devices have been installed to reduce exhaust emissions and to increase thermal efficiency. Those devices reduce the exhaust pipe opening area and increase the exhaust gas pressure. The pressure increase disturbs a gas flow and has a bad effect on the engine performance. However there is some study that NOx can be reduced with exhaust gas pressure increase. In this study an engine performance is tested with various opening ratios. The result shows that the fuel consumption rate is reduced in case of little amount of the pressure increase, and NOx is reduced with the pressure increase, while the concentration of the toxic exhaust gases are increased in the case of high back-pressure.

Flow Measurements at the Exit of a Throttle Valve in Gasoline Engines (가솔린 엔진의 스로틀 밸브 출구에서 유동측정)

  • Kim, Sung-Cho;Kim, Cheol;Choi, Jong-Geon;Wee, Hwa-Bok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • The flow and combustion patterns have been investigated inside the gasoline engine cylinder with the swirl or tumble flow, whereas the air flow characteristics, which are generated in the part of intake system before entering into the intake manifold, have not been known completely. It is necessary to analyze the flow field in the intake system consisting of air rater, throttle valve and intake manifold. The throttle valve, used to control the intake air flow rate, is important because it makes various mass flow rate and flow patterns. Three-dimen-sional How characteristics such as velocities, turbulent intensities and Reynolds shear stresses are measured by the hot wire anemometer at the exit of the throttle valve with the variation in the valve opening angle($15^{\circ}$, $45^{\circ}$, $75^{\circ}$ and $90^{\circ}$) and the Reynolds numbers (45000, 70000 and 140000). There are a lot of changes in flow characteristics at $75^{\circ}$ due to the large recirculation flow comparing with those of the other cases, and the streamwise velocity is especially enforced strongly below the valve shaft. The other component velocities are relatively large near the centerline parallel to the valve shaft. The effects of the Reynolds number on the flow field are not severe.

Basic research for designing start up business education in fashion design related departments (패션디자인관련 학과 내 창업교육 설계를 위한 기초연구)

  • Jeong, Hwa-Yeon
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.20 no.2
    • /
    • pp.89-100
    • /
    • 2018
  • This study investigated students' perception of a starting up business in the fashion design related departments of two year colleges to present the basic data for designing a start up business education and examined the opening status of the start up business subjects. Only 4.4% of respondents answered that they had an experience in a start up. And 76.2% of respondents answered that they would like to start up a business after graduation. The initial start up types were "online shopping mall" and "blog market" in that order. Nearly 86.7% of respondents answered that they needed "start up" education in college. To the question of whether they would participate if there is a start up extracurricular program, and the subject they would choose, 40.9% answered "I want to get a start up related certification", showing the highest rate of interest in the course. The status of introducing start up business subjects in the regular courses in fashion design related departments in 25 two year colleges related that there were 11 start up related courses begun in the last semester, that is, the 2nd semester of the 2nd year. Since the proportion of clothing in online shopping malls is high, start up education based on the demands of students in fashion design majors can be used as another employment exit strategy.

Study of Shock Tube for Wave Phenomenon in High Speed Railway Tunnel(1) - On the characteristics of Compression Wave - (고속철도 터널에서 발생하는 파동현상에 관한 충격파관의 연구(1) - 압축파의 특성에 대하여 -)

  • ;松尾一泰
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2686-2697
    • /
    • 1994
  • When a railway train enters a tunnel at high speed, a compression wave is formed in front of the train and propagates along the tunnel. The compression wave subsequently emerges from the exit of the tunnel, which causes an impulsive noise. In order to estimate the magnitudes of the noises and to effectively minimize them, the characteristics of the compression wave propagating in a tunnel must be understood. In the present paper, the experimental and analytical investigations on the attenuation and distortion of the propagating compression waves were carried out using a model tunnel. This facility is a kind of open-ended shock tube with a fast-opening gate valve instead of a general diaphragm. One-dimensional flow model employed in the present study could appropriately predict the strength of the compression wave, Mach number and flow velocity induced by the compression wave. The experimental results show that the strength of a compression wave decreases with the distance from the tunnel entrance. The decreasing rate of the wave strength and pressure gradient in the wave is strongly dependent on the strength of the initial compression wave at the tunnel entrance.

A Study on the Combustion Flow Characteristics of a Exhaust Gas Recirculation Burner with the Change of Outlet Opening Position (배기가스 재순환 버너에서 연소가스 출구 위치에 따른 연소 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.8-13
    • /
    • 2018
  • Nitrogen oxides (NOx) have recently been very influential in the generation of ultrafine dust, which is of great social interest in terms of improving the atmospheric environment. Nitrogen oxides are generated mainly by the reaction of nitrogen and oxygen in air in a combustion gas atmosphere of high temperature in a combustion apparatus such as thermal power generation. Recently, research has been conducted on the combustion that recirculates the exhaust gas to the cylindrical burner by using a piping using a Coanda nozzle. In this study, three types of burners were carried out through computational fluid analysis. Case 1 burner with the outlet of the combustion gas to the right, Case 2 burner with both sides as gas exit, Case 3 burner with left side gas exit. The pressure, flow, temperature, combustion reaction rate and distribution characteristics of nitrogen oxides were compared and analyzed. The combustion reaction occurred in Case 1 and Case 2 burner in the right direction with combustion gas recirculation inlet and Case 3 burner in the vicinity of mixed gas inlet. The temperature at the outlet was about $100^{\circ}C$ lower than that of the other burners as the Case 2 burner was exhausted to both sides. The NOx concentration of Case 1 burner at the exit was about 20 times larger than that of the other burners. From the present study, it could be seen that it is effective for the NOx reduction to exhaust the exhaust gas to both side gas exits or to exhaust the exhaust gas to the opposite direction of inlet of recirculation gas.

A Study of the Combustion Flow Characteristics of a Exhaust Gas Recirculation Burner with Both Outlets Opening (양쪽 출구가 트인 배기가스 재순환 버너의 연소 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.696-701
    • /
    • 2018
  • The nitrogen oxides generated during combustion reactions have a great influence on the generation of acid rain and fine dust. As an NOx reduction method, exhaust gas recirculation combustion using Coanda nozzles capable of recirculating a large amount of exhaust gas with a small amount of air has recently been utilized. In this study, for the burner outlet with dual end opening, the use of a recirculation burner was investigated for the distribution of the pressure, streamline, temperature, combustion reaction rate and nitrogen oxides using computational fluid analysis. The gas mixed with the combustion air and the recirculated exhaust gas flow in the tangential direction of the circular cylinder burner, so that there is a region with low pressure in the vicinity of the fuel nozzle exit. As a result, a reverse flow is formed in the central portion of the burner near the center of the circular cylinder burner and the exhaust gas is discharged to the outside region of the circular cylinder burner. The combustion reaction occurs on the right side of the burner and the temperature and NOx distribution are relatively higher than those on the left side of the burner. It was found that the average NOx production decreased from an air flow ratio of 1.0 to 1.5. When the air flow ratio is 1.8, the NOx production increases abruptly. It is considered that the NOx production reaction increases exponentially with temperature when the air ratio is more than 1.5 and the NOx production reaction rate increases rapidly on the right-hand side of the burner.