• Title/Summary/Keyword: Exit Region

Search Result 262, Processing Time 0.022 seconds

The Flow Characteristics of Fuel Droplets between the Twin Spray for 4-hole Gasoline Injectors (4공 가솔린 분사기의 2중 분무 사이에서 연료 액적들의 유동특성)

  • Kim, Won-Tae;Kang, Shin-Jae;Rho, Byung-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.484-495
    • /
    • 2003
  • This study investigates the flow characteristics of fuel droplets between twin spray for the 4-hole injector used a 4-valve gasoline engine. The injectors for this study were the three types of 4-hole gasoline injector in which orifice diameter was 0.24mm. The spray behavior of twin spray was investigated by means of visualization employed stroboscope. A PDPA system was employed to simultaneously measure the size and velocity of fuel droplets. The 3 dimensional mean velocities. droplet size distributions, SMD and joint probability density function of velocity and droplet size are analyzed at the center of the spray and the center region of twin spray. As a result, the configurations of injector exit such as orifice interval and length of outlet, are very important factors that affect the flow characteristics of fuel droplets at the center region of twin spray.

Heat/Mass Transfer and Flow Characteristics within a Film Cooling Hole of Square Cross Sections with Asymmetric Inlet Flow Condition (비대칭 입구조건을 갖는 정사각 막냉각홀 내부에서의 열/물질전달 및 유동 특성)

  • Rhee, Dong-Ho;Kang, Seung-Goo;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.14-21
    • /
    • 2001
  • An experimental study has been conducted to investigate the heat/mass transfer characteristics within a square film cooling hole with asymmetric inlet flow conditions. The asymmetric inlet flow condition is achieved by making distances between side walls of secondary flow duct and film cooling hole different; one side wall is $2D_h$ apart from the center of film cooling hole, while the other side wall is $1.5D_h$ apart from the center of film cooling hole. The heat/mass transfer experiments for this study have been performed using a naphthalene sublimation method and the flow field has been analyzed by numerical calculation using a commercial code. Swirl flow is generated at the inlet region and the heat/mass transfer pattern with the asymmetric inlet flow condition is changed significantly from that with the symmetric condition. At the exit region, the effect of mainstream on the inside hole flow is reduced with asymmetric condition. The average heat/mass transfer coefficient is higher than that with the symmetric condition due to the swirl flow generated by the asymmetric inlet condition.

  • PDF

Analyzing the Spray-to-spray Interaction of GDI Injector Nozzle in the Near-field Using X-ray Phase-Contrast Imaging (X선 위상차 가시화 기법을 이용한 GDI 인젝터 노즐 근방의 분무 간 상호간섭 해석)

  • Bae, Gyuhan;Moon, Seoksu
    • Journal of ILASS-Korea
    • /
    • v.25 no.2
    • /
    • pp.60-67
    • /
    • 2020
  • Despite its benefit in engine thermal efficiency, gasoline-direct-injection (GDI) engines generate substantial particulate matter (PM) emissions compared to conventional port-fuel-injection (PFI) engines. One of the reasons for this is that the spray collapse caused by the spray-to-spray interaction forms the locally rich fuel-air mixture and increases the fuel wall film. Previous studies have investigated the spray collapse phenomenon through the macroscopic observation of spray behavior using laser optical techniques, but it is somewhat difficult to understand the interaction between sprays that is initiated in the near-nozzle region within 10 mm from the nozzle exit. In this study, the spray structure, droplet size and velocity data were obtained using an X-ray imaging technique from the near-nozzle to the downstream of the spray to investigate the spray-to-spray interaction and discuss the effects of spray collapse on local droplet size and velocity distribution. It was found that as the ambient density increases, the spray collapse was promoted due to the intensified spray-to-spray interaction, thereby increasing the local droplet size and velocity from the near-nozzle region as a result of droplet collision/coalescence.

Heat/Mass Transfer and Flow Characteristics Within a Film Cooling Hole of Square Cross Sections (I) - Effects of Blowing Ratio and Reynolds Number - (정사각 막냉각홀 내부에서의 열/물질전달 및 유동 특성 (I) - 분사비 및 레이놀즈 수 효과 -)

  • Kang, Seung-Goo;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.927-936
    • /
    • 2002
  • An experimental study has been conducted to investigate the heat/mass transfer characteristics within a film cooling hole of square cross-section for various blowing ratios and Reynolds numbers. The experiments have been performed using a naphthalene sublimation method and the flow field has been analyzed by numerical calculation using a commercial code. A duct flow enters into a film cooling hole in a cross-direction. For the film cooling hole with square cross-section, it is observed that the reattachment of separated flow and the vortices within the hole enhance considerably the heat/mass transfer around the hole entrance region. The heat/mass transfer on the leading edge side of hole exit region increases as the blowing ratios decrease because the main flow induces a secondary vortex. Heat/mass transfer patterns within the square film cooling hole are changed little with the various Reynolds numbers.

Heat/Mass Transfer and Flow Characteristics Within a Film Cooling Hole of Square Cross Sections (II) - Effects of Asymmetric Inlet Flow Condition - (정사각 막냉각홀 내부에서의 열/물질전달 및 유동 특성 (II) - 비대칭 입구조건 효과 -)

  • Rhee, Dong-Ho;Kang, Seung-Goo;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.937-944
    • /
    • 2002
  • An experimental study has been conducted to investigate the heat/mass transfer characteristics within a square film cooling hole with asymmetric inlet now condition. The asymmetric inlet now condition is achieved by making distances between side walls of the secondary now duct and the film cooling hole different; one side wall is $2D_h$ apart from the center of the film cooling hole, while the other side wall is $1.5D_h$ apart from the center of the film cooling hole. The heat/mass transfer experiments for this study have been performed using a naphthalene sublimation method and the now field has been analyzed by numerical calculation using a commercial code. Swirl now is generated at the inlet region and the heat/mass transfer pattem with the asymmetric inlet now condition is changed significantly from that with the symmetric condition. In the exit region, the effect of mainstream on the inside hole now is reduced with the asymmetric condition. The average heat/mass transfer coefficient is higher than that with the symmetric condition due to the swirl now generated by the asymmetric inlet condition.

Flow Instability Assessment Occurring in Low Flow Rate Region According to the Change of a Centrifugal Compressor Impeller Shape (원심압축기 임펠러의 형상 변화에 따른 저유량 영역에서 발생하는 불안정 유동 평가)

  • Jo, Seong Hwi;Kim, Hong Jip;Lee, Myong Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.21-26
    • /
    • 2016
  • The objective of present study is to assess the performance of the first stage compressor in a total 3-stage 5000 HP-level turbo compressor. CFD commercial code, CFX has been used to predict three-dimensional flow characteristics inside of the impeller. Shear Stress Transport (SST) model has been used to simulate turbulent flows through Reynolds-averaged Navier-Stokes (RANS) equations. Grid dependency has been also checked to get optimal grid distribution. Numerical results have been compared with the experimental test results to elucidate performance characteristics of the present compressor. In addition, flow characteristics of the impeller only have been studied for various blade configurations. Angular offset in leading edge of the blade has been selected for the optimal blade design. Performance characteristics in region of low mass flow rate and high pressure ratio between the impeller entrance and exit have been investigated for the selection of optimal blade design. Also, flow instability such as stall phenomena has been studied and anti-stall characteristics have been checked for various blade configurations in the operational window.

Flame Length Scaling and Structure in Turbulent Hydrogen Non-Premixed Jet Flames with Coaxial Air (동축공기 수소 확산화염의 구조 및 화염길이 스케일링)

  • Yun, Sang-Wook;Oh, Jeong-Seog;Kim, Mun-Ki;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.105-110
    • /
    • 2006
  • Many previous works have been performed to provide correlations of flame length, theoretically and experimentally. Most of these results studied were conducted in vertical turbulent flame with no coaxial air condition. The present study analyzes the flame length scaling with coaxial air. In turbulent hydrogen non-premixed jet flames with coaxial air, flame length scaling theoretically proposed so far has been related with the concept of a far-field equivalent source. At high coaxial air to fuel velocity ratio, $U_A/U_F$, however, this scaling theory has some difference with experimental flame length data. This difference is understood to be due to the fact that the theory is based on far-field notion, while the effect of coaxial air on jet flame occurs in the region near the nozzle exit. Therefore, we define effective jet density $P_{eff}$ involving the concept of near-field so that effective jet diameter can be extended to the near-field region. In this condition, we modify the correlation and compare with experimental data.

  • PDF

Three-Dimensional Computational Flow Analysis of a Sirocco Fan for a Package Air Conditioner by LES (LES에 의한 PAC용 시로코홴의 3차원 전산유동해석)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.51-59
    • /
    • 2012
  • The computational flow analysis using LES technique was carried out to investigate the flow characteristics of a sirocco fan under the maximum flowrate condition. The commercial SC/Tetra software was used for this unsteady and three-dimensional numerical analysis. In consequence, because a flow is unstable within the range of about 50% of a housing depth from a bellmouth around the cutoff region, the passing flow through the blade cascade occurred on the X-Y plane is a slow or a reverse with approaching to the housing inlet. Also, the secondary flow shows on the radial plane of a housing, and its vortex center exists within about 33% of a housing depth from a bellmouth except the cutoff region. Moreover, the flow occurring on the exit plane of a sirocco fan shows a complex secondary flow.

A Study of Measurement and Analysis of Flow Distribution in a Close-Coupled Catalytic Converter (근접장착식 촉매장치의 유동분포 측정 및 해석에 관한 연구)

  • Jo, Yong-Seok;Kim, Deuk-Sang;Ju, Yeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.533-539
    • /
    • 2001
  • In this study, results from an experimental and numerical study of flow distribution in a close-coupled catalytic converter (CCC) are presented. The experiments were carried out using a glow measurement system. Flow distribution at the exit of the first monolith in the CCC was measured using a pitot tube under steady and transient flow conditions. Numerical analysis was done using a CF D code at the same test conditions, and the results were compared with the experimental results. Experimental results showed that the uniformity index of exhaust gas velocity decreases as Reynolds number increases. Under the steady flow conditions, flow through each exhaust pipe concentrates on a small region of the monolith. Under the transient flow conditions, flow through each exhaust pipe with the engine firing order interacts with each other to spread the flow over the monolith face. The numerical analysis results support the experimental results, and help explain the flow pattern in the entry region of the CCC.

A numerical study of the eccentricity effect of the intake valve on the in-cylinder flow field (실린더 내부 유동장에 대한 흡입 밸브의 편심 효과에 관한 수치적 연구)

  • 양희천;최영기;고상근;허선무
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.39-49
    • /
    • 1992
  • Three dimensional numerical calculation carried out to investigate the eccentricity effect of intake valve on the in-cylinder flow fields for the intake stroke and the compression stroke. During the intake stroke, a corner vortex in the vicinity of the valve exit interacted strongly with a toroidal vortex in the case of axisymmetric valve. But a weak interaction between the corner vortex and the toroidal vortex occurred due to the eccentricity of the valve in the narrow region between valve and cylinder wall in the case of offset valve. During the compression stroke, it was found that a solid body rotation was maintained in the radial-circumferential plane in the case of axisymmetric valve. But a weak secondary vortex was formed in the radial-circumferntial plane in the case of offset valve, because of the interaction between swirl flows and inward flows towards cylinder axis. The calculated turbulence intensity presented a similar trend with the experiental results but, in spite of using the modified k-.epsilon. model, it was found that the qualitative difference between the numerical results and experimental results was large in the region where the velocity gradient is substantial.

  • PDF